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C ONFERENCE THEMES

The conference presentations are centered around the following themes:

o EDUCATIONAL RESEARCH: Results of current research in mathematics education and the assessment of student
learning. Access and equity.

o TECHNOLOGY: Effective integration of computing technology (Calculators, Computer Algebra Systems, WWW
resources) into the undergraduate curriculum

¢ INNOVATIVE TEACHING METHODS : Innovative ways of teaching undergraduate mathematics, such as
cooperative and collaborative teaching. Writing in mathematics; laboratory courses.

e CURRICULA INNOVATIONS: Revisions of specific courses and assessment of the results. History of
mathematics; innovative applications; project driven curricula.

e PREPARATION OF TEACHERS: Trends in teacher education. Changing needs of teachers.

e MATHEMATICS AND OTHER DISCIPLINES : The effects of changes in the teaching of mathematics on other
fields. The needs of client disciplines; interdisciplinary courses.

e DISTANCE LEARNING: Distance learning technologies (networking, tele-education) for teaching and learning
mathematics. Current hardware and software delivery media; educational materials. Visions for the future.
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From the Conference Organizers of ICTM2

Mathematics is central to our world. Mathematical ideas are essential for developments in science and
engineering. Contributions from mathematicians have revolutionized finance and biology over the past
decades. A mathematically literate citizenry is essential to a country’s vitality. The teaching of mathematics
is therefore a cornerstone of a country's educational health.

Yet most countries today are concerned about the level of mathematics their students learn, and
concerned that interest in mathematics is falling at a time when the need for technical skills is rising. Many
countries are wrestling with shortages of teachers, curricula that do not reflect modern needs, and teaching
practices that do not always work for their students. Fortunately, recently there have also been significant
advances in understanding how students learn and a surge of interest in the teaching of mathematics.

Following the success of the First International Conference on the Teaching of Mathematics (Samos,
Greece, July 1998), the Second International Conference on the Teaching of Mathematics (ICTM2),
provides a remarkable opportunity to bring together faculty from around the world who are committed to
introducing innovative teaching methods. Mathematicians have traditionally not talked to each other much
about teaching, nor have they talked to mathematics educators. Certainly, international communication
between mathematicians is often more about research results in mathematics than about teaching strategies.
This conference attempts to foster a conversation to fill this gap.

ICTM2 received about 420 proposals for presentations from over 65 countries—over one third of the
world’s nations. Their topics span educational research, technology, mnovative teaching methods, curricula
innovations, the preparation of teachers, connections of mathematics with other disciplines, and distance
learning. Papers from ten distinguished plenary speakers, representing several continents, are also included
in the proceedings. We hope that the published papers will lead the reader to a better understanding of the
issues facing instructors of mathematics around the globe and that this understanding will lead to a higher
level of international cooperation in the effort to improve the teaching of mathematics.

In addition to the papers, abstracts of the accepted oral and poster presentations are included. Abstracts
were reviewed be members of the program committee and authors of accepted abstracts given the
opportunity to submit a full paper. The papers were also reviewed by the International Program Committee.

We would like to express our immense gratitude to each and every member of the organizing committee,
for his or her time, dedication, and invaluable comments in the referecing process. We are also deeply
indebted to the conference sponsors for making such an international event possible in beautiful
surroundings on the island of Crete.

Special thanks to the University of Crete for hosting the Conference and to John Wiley & Sons Inc. for
publishing the Proceedings.

Ignatios Vakalis, Chair, Capital University, USA

Deborah Hughes Hallett, Co-chair, University of Arizona, USA
Christos Kourouniotis, Co-chair, University of Crete, Greece
Douglas Quinney, Co-chair, University of Keele, UK
Constantinos Tzanakis, Co-chair, University of Crete, Greece
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NEW CHALLENGES IN THE TEACHING OF MATHEMATICS

Jean Pierre BOURGUIGNON

Directeur de recherche au CNRS
Institut des Hautes Etudes Scientifiques
35, route de Chartres
F-91440 BURES-SUR-YVETTE

e-mail: jpb @ihes.fr
and

Centre de Mathématiques
Ecole Polytechnique
F-91128 PALAISEAU Cedex
(France)

ABSTRACT
Does the manifold, but discrete, presence of Mathematics in many objects or services around us
impose new constraints to the teaching of Mathematics? If citizens need to be comfortable in various
situations with a variety of mathematical tools, the learning of Mathematics requires that one starts with
simple concepts. How can one face this dilemma?
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“L'école doit enseigner & analyser et a discuter
les paramétres sur lesquels se fondent nos
affirmations passionnelles."

Umberto ECO,
Le Monde, La Repubblica, 10.10.2001

The content of this lecture grew out of discussions with teachers and scientists. In the title
one could replace "Mathematics" by other fields, as the following quote from the French
philosopher Alain ETCHEGOYEN shows: "Si la... apprend aux éléves a analyser les concepts,
a raisonner de facon démonstrative et & argumenter, elle est une des disciplines qui
faconnent I'"honnéte homme" de jadis, le "citoyen" d'aujourd'hui, les deux étant liés."” For
him of course the dots were to be replaced by "philosophie”. You can find Mathematics in the
title of my lecture in good part because | am a professional mathematician. In putting my
arguments in writing, my only ambition is to contribute to a debate. School is at risk in many
societies because, in my opinion, not enough attention has been given neither to the variety of
types of knowledge to which students have to be exposed there, nor to new links existing
between Science and Society, nor finally to the need to position Mathematics as a human activity
in the course of History.

1. How to Link Technical and Generic Knowledge?

a) Doing Mathematics and learning about Mathematics

Mathematicians tend to agree that one cannot study their discipline without actually "doing
Math". This is why we are so keen on giving problems to our students. In doing so we hope to
fight the misleading conception that Mathematics could be a new scholastics, when many of its
concepts were born while taking up challenges coming from fields outside Mathematics.

To succeed in this, students need a certain familiarity with basic mathematical concepts
and/or objects, and they must learn to manipulate them while getting some idea about their
universality and their relevance. This last point needs to be further clarified since, as will be
explained later, behind it lies a potentially annoying hiatus.

This very seldom leads students to the perception that beyond the mathematical exercises
they struggle with lies hidden a profession. As mathematicians, we all had to face the (hard)
question coming from relatives and/or friends: "What can you do in a domain where facts do
not change and everything has been known for thousands of years?" Our situation is
certainly very different from that of musicians. For them it is obvious to a wide public that the
good practice of playing music can be learned through strenuous routines, and that music gets
enriched through the contributions of creative composers. If one considers the percentage of our
students who, later, will become mathematicians, this may appear a minor issue. For me, to the
contrary, getting Mathematics recognized as a living science lies at the heart of the matter. I will
say more on this later.

So far I have only touched upon technical knowledge in schools, about which of course there
are very diverse opinions concerning its content, how to get it across to students and how to
measure its appropriation by them. There is a lot to say on this but the point on which I would
like to focus my attention is quite a different one, namely that the use of scientific knowledge in
modern societies requires much more than this familiarity with simple concepts and tools. This is
what I tentatively call "generic" knowledge. Because of the scientific underpinnings of many
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aspects of modern life, getting some understanding on how complex systems rely on knowledge
has become of paramount importance for citizens to form enlightened opinions and to make
independent decisions. How can school training help with that? The dilemma there is: How can
one give the proper perspective on scientific issues relevant to the daily functioning of our
society in the very constrained school world? This covers one specific issue: How to get the
proper balance between “simplicity” and "complexity” at school?

b) Mathematics entertains special relations to language and truth

In this paragraph 1 will only raise two points with respect to which Mathematics appears
special, namely its peculiar relation to language and its special link to truth. These two points are
in some sense obvious but I do not think that they have been looked at in the proper perspective
as far as the teaching of Mathematics in schools is concerned. There are mentioned here
because they appear to me as possible obstacles to address the global challenge mentioned
before.

Let us begin with the relation of Mathematics to language. It is well known that the
mathematical language must be precise, for the good reason that the ultimate purpose of a
mathematical development is to "prove" a statement. This is even sometimes the basis of jokes at
the expense of mathematicians. Any imprecision opens the door to a misconception, and even
the smallest one can destroy the whole edifice. One should be careful though with one point,
namely that after all in a mathematical explanation one is often using ordinary language in a
special way. Most of the time, ordinary and strictly mathematical expressions are mixed, forcing
students to live a sort of "double life". Mathematicians should be aware that this situation is not
without consequences, and does create a sense of frustration for a number of students, because
they feel that their ability to express themselves has been substantially limited. This can be the
basis of strong bad feelings about Mathematics on the part of a number of students. This
potential handicap can even get worse in more advanced courses where names given to many
concepts are purely conventional. It is a fact that most of the names are well chosen, but some
choices may exaggerate the feeling that Mathematics is cut off from real life because students
realize that practicing Mathematics may even require to give up the free use of language.

For the purpose of this lecture, I would like to limit the relation of Mathematics to truth to the
fact that a student who masters an argument can win against his or her teacher and/or his or her
classmates. Such an experience can play a major role in the structuring of the personality. It also
forces students to practice the dialectics between doubt and certitude, a very healthy exercise.
Other structuring effects can also be hoped for in relation with the strength of good
argumentation. Evariste Galois put it in an interesting way. He proposed “faire du
raisonnement une seconde mémoire" as possible motto for the great benefit of the
mathematical training. All this has very important consequences for teachers. One of them is
that their worst mistake can be to impose their views against those of students who are actually
right. Mathematics has a major role to play in the training towards critical thinking. As a resul,
there are several instances in History where Mathematics, and/or mathematicians, were
considered subversive.

2. New Links between Mathematics and Society

a) Making the link evident
It is not clear, even to some mathematicians that a great many of the mathematical notions
are at work in Society around us. Moreover, our times are special. Indeed, there has never been
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so many instances where this happens. Very often this is through the use of a mathematical
model. At the same time, they are very few cases at school where the notion of a model is
properly introduced, and students invited to make use of it.

For me the variety of situations where mathematical notions are in action in objects and
services of daily use justifies the claim that we are entering a new age for Mathematics in terms
of its relations with Society. They are several aspects for this, some connected with
Mathematics itself, some with the development of high technologies. Let us list some causes for
this strengthening:

- the extraordinary increase in the power of computers now makes many more
questions amenable to calculations via models;

- we are living in a society where communications play a major (if not dominant) role,
and dealing with large amounts of data requires to think of them in mathematical terms.
Mathematics needed for that purpose is sometimes sophisticated and can be of recent
development; in some cases even, problems originating from dealing with these data do represent
new challenges to mathematicians;

- more and more often images become the main object under consideration, and need
to be stored, compressed and securely transmitted; this is new type of objects to be manipulated
systematically by mathematicians;

- stochastic aspects of some phenomena have today to be taken into consideration
and properly analysed, thanks to the progress of Probability Theory and of Statistics.

Let us give some specific examples, many of them having to do with complex systems (in
which one must be careful with the fact that, in the long run, often secondary effects dominate
primary ones):

- telecommunication systems are incorporating many different mathematical
components to code messages, to compress data, to design cellular phone networks; etc.;

- data collecting and accessing have invaded, and will invade even more, our lives;
think of the generalized presence of bar codes (fundamental to manage inventories), of GPS
(Global Positioning System) which involves sophisticated Mathematics when one would naively
think that, thanks to its satellite network, the problem to be solved is a mere Euclidean geometry
one; the medical scanner is a machine whose principle is based on a mathematical theorem, the
Radon transform;

- automated systems are hidden in very many objects of frequent uses, such as
transportation means (planes, trains, buses, cars, elevators, etc.), telecommunications, and soon
intelligent buildings or houses;

- shape optimization can be motivated either by technical reasons (improving the
aerodynamics of a car, or a plane wing) or aesthetic ones. Dealing with shapes is very
cumbersome experimentally. One needs to manufacture prototypes that have to be one by one
tested in wind tunnels, hence the introduction of "numerical wind tunnels", i.e. pieces of software
and combination of mathematical operations adjusting several parameters at once in order to
improve the design.

This new situation is exemplified by the fact that today there are mathematical products, as
they are chemical products. As professional we must acknowledge this new dimension.
Mathematicians rarely do so, maybe because we are still facing the unpleasant situation that no
industrial sector considers itself as a "mathematical” sector, although the finance industry is
getting close to being one.
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A good reason for the non obviousness of the presence of Mathematics around us is the fact
that one is often tempted to focus one's attention on a concrete object, when its actual social use
involves it as part of a network, something that is most of the time hidden, and rather invisible.
This is typical in airplanes for example.

b) Learning about limits and detecting the impossible

Many dimensions of social life involve understanding the meaning and therefore the limits of
the information one can draw from a given situation, even if it has some stochastic aspect. A
typical example of this can be found in the proper use of statistical data. They are present in
many different areas, from opinion polls to insurance estimations, from risks to forecasting. They
do play an important role if one is to take seriously the task of helping citizens assume their
responsibilities. The purpose is not at all to expect that a sophisticated technical training in
statistics can be achieved at school, but rather to make sure that all citizens be ready to
challenge some claims on the basis that they realize why these claims are either self-
contradictory or impossible.

This can be coined as a scientific approach to doubt, which should be one of the targets
given to the mathematical training at school. It has a technical side but putting it at a too
technical level can obscure the issue, which is to improve the contribution school training can
make to citizenship.

More broadly, school is also challenged to help future citizens to get a better apprehension of
the impact of basic scientific knowledge in society. Indeed in the last part of the XXth century
one could witness a number of short-circuits, direct connections between discoveries or
innovations in research laboratories and new industrial fields. After all this is exactly how
intemet got started, or how the telecommunication industry boomed. There was no preexisting
market. This forces to rethink the relationship between research and development, and to
challenge the claim that the search for a concrete application has to be the driving force of a
programme, since it is a misleading oversimplification of the real mechanism. Enough room must
be kept for free thinking besides targeted research. Again such a goal will be easier to achieve if
a larger number of people see more clearly how this mechanism works.

As a result, providing teachers with resources to illustrate their courses through concrete
situations where notions they teach, and exercises they propose to students are put to work,
becomes a very serious issue that has not yet been addressed properly in many countries, in
particular at the secondary level.

3. Mathematical Sciences as Human Activities

a) How does, and did, knowledge form?

The resistance to some changes that we have been advocating in the previous paragraphs is
likely to find some of its roots in a misconception on how Mathematics actually develops, and
developed. A temporality was even claimed by some of us as a natural companion of the
universality of Mathematics. I deeply disagree with such a statement. The need for a historic
perspective on any technical knowledge is obvious. It dictates the introduction of the proper dose
of History of Science in any science course, probably not as a subject in itself but rather as a
facilitator of the acquisition of a new notion.

In this respect, an important role must be given to breaks in past conceptions. Indeed, they
show that knowledge is not the result of a linear accumulation and requires some painful
rediscussions of the heritage from the past. Such an approach is likely to provide opportunities to
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link the presentation of Mathematics with other disciplines, scientific or not, and to make more
meaningful comparisons between the different methods at work in these disciplines.

b) What is known, what is not known and what cannot be known

As I said earlier, one of key features to hope and generate a different attitude towards
Mathematics among new generations of students, is to make it perceptible to them that there are
questions which presently do not have answers. Progress on them can be of different types:
either they can be considered as non interesting (a highly subjective judgment of course), and as
such not worthy of further investigation, or impossible to answer (realizing that some important
statements in Mathematics can be proved to be non provable was one of the major
achievements in XXth century Mathematics due to Kurt Godel), or just beyond reach of present
methods and concepts.

Giving some idea that there are challenges around us, and making them perceptible, and at
the same time meaningful, is a challenge in itself. Today, to my knowledge, not much thought has
been put towards this goal, and this lack of investment becomes a handicap in our societies
where the relation of students to schools has changed a lot because of the huge amount of
information on a variety of subjects they have access to outside the school system.

If we are to have a chance of convincing a large portion of the school population that
Mathematics is a living science, the minimum we must achieve is to prove it has a future. We
cannot take this for granted, and we have to design tools to do that.

¢) The role and place of abstraction

One of the points that, in my opinion, needs to be addressed has to do with the process of
abstraction. Tt has focused a lot of criticism, in fact the archetype of criticisms against
Mathematics, when the nature of our science lies for the most part in it. Henri Poincaré went as
far as saying "Faire des mathématiques, c'est donner le méme nom a des choses
différentes.” For me, the request to make Mathematics less abstract is self-contradictory. It
may be true though that we did not discuss enough, or at least make it enough evident, how the
abstraction process functions within Mathematics. It does have several aspects: from realizing
that a common structure is at work in different situations to coming up with the minimum
formulation for it, therefore establishing! an ideal object.

The previous point is not at all separate from a discussion of the axiomatic method. Its
widespread use in the teaching of Mathematics, especially at more advanced levels, confuses the
issue concerning it. It is quite clear to me that its introduction is one of the achievements in the
History of Mathematics. It clearly marked the independence of mathematical concepts, and
forced to make precise the role that mathematical developments have to play in modelling a
situation. It also made possible the fantastic expansion in the training of Mathematics that one
could witness after the Second World War. Nevertheless, even if one makes the pedagogical
choice of introducing some notions in a purely axiomatic manner, one is not freed from the
obligation of making a connection, at some stage of the learning process, with what prompted
this notion to be singled out, together with the interest or limitations of variants of it.

IThe choice 1 made of the word “establishing" in the previous sentence is deliberate in order not to take
sides in the deep philosophical debate as to whether mathematical objects are "created" or “discovered”,
the long lasting dispute between Platonicists and Intuitionists. It is of course worthy of a thorough
discussion, but to conduct it requires some technical philosophical tools that I do not want to introduce
here. it could also divert us from the main points I want to discuss which are, I believe, independent from
these philosophical stands.
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4. A few Points as Conclusion

As said in the introduction, the main purpose of this address is to open a discussion. In my
opinion, recent developments in Society require paying serious attention to new requests put to
the teaching of Mathematics. Finding the best way to meet them will require many exchanges
and attempts. Some of them will fail in certain circumstances and succeed in others.
Understanding what makes this happen will probably force us to examine more thoroughly than
we are used to the great diversity of pedagogical situations teachers face today.

In this conclusive paragraph I only offer some goals, which, 1 feel, have to be pursued a bit
systematically. For none of them can I claim to have the right solution for achieving it.

a) Linking Mathematics to the rest of knowledge in schools

Isolating Mathematics from the rest of knowledge is for me the worst that can happen,
especially in connection with other sciences. This does not mean that Mathematics does not
have its own territory, specific methods, and peculiar requirements. Much to the contrary, it is in
confronting the various approaches used in several areas that one has a chance of presenting
Mathematics in the right perspective. Differences will stick out, and therefore an identity should
emerge from this. Again, I cannot imagine that this will become a teaching in itself. It is by
putting the right touches at the right moment that it is the more likely to be achieved.

At the same time, the worst would be that this link be made artificially or a necessary
condition for the validation of a school work. There are indeed some topics worthy of attention at
school that find their roots in Mathematics and whose development keeps you within the
discipline. One must just make sure that the exposure of students to cross-disciplinary activities
is big enough to make it perceptible to them that the various learning processes are indeed
complementary. They all aim at understanding the world around us, and making it possible for
them to put their knowledge to use in several different contexts.

b) Making sure that the knowledge relevant for all is properly integrated in curricula

Choosing material to be covered in curricula is a very delicate matter, but I feel sometimes
too much attention is given to it at the expense of other aspects of the school environment that, in
the long run, play an even more important role. At least this is the impression I got from
participating in the elaboration of the curriculum for French high schools.

The need for coherent programmes compatible with the time allocated for the study is of
course a big constraint. The introduction of new topics requires that teachers be trained, and
proper documents be available. This should be thought in a much broader way as just having
textbooks. One must also help teachers by providing them with documents for independent
reading.

Nevertheless, efforts have to be made and competences gathered in order to make sure
knowledge that has become pervasive in the understanding of how Society functions is taught at
the right level. A typical example of this has to do with Statistics. Making it adequately
connected to the traditional mathematical training requires some thought in the context of the
present curricula in some countries. For these questions one should be careful in not taking a too
technical approach, and be caught in a narrow pursuit of performance when what is at stakes is
transmitting a basic, but very solid, understanding of the underpinnings and general ideas.

¢) Working with teachers .
None of this can be achieved if working and confident contacts with teachers are not
established. It requires creating places where this working together can take place, forums
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where personal successful initiatives can be given the necessary resonance, and monographies
and/or other media from which relevant information can be found.

Another issue, which can of course be the basis for a debate, is the very purpose of the
training in Mathematics in schools. In my opinion it cannot be limited to giving the basis for
future studies to those who will become professional mathematicians, when citizens, but also so
many professionals, need more than ever to relate in confidence with Mathematics, even if their
technical knowledge of it is limited. Having a good evaluation of what Mathematics does, and
does not achieve has become very important.

This raises two questions about possible pedagogical methods. Involving students with
personal projects, of a size appropriate to their level of sophistication, definitely gives them a
chance to get a feeling of a more independent approach to work and, more important, to discover
new connections by themselves. There is evidence that the learning effect of such experiences
lasts longer than a more systematic and more technically oriented one but it can come only after
a sufficient technical ability has been built. Again what is to be looked for is an optimal
combination of the two. In this respect, it is sure that methods to evaluate performances at
school have to be enriched and diversified. Much too often the teaching is completely geared by
the evaluation schemes put in place. A political figure of the first half of last century in France,
Edouard HERRIOT, is remembered for having said "La culture, c'est ce qui reste quand on a
tout oublié". 1 have the feeling that mathematicians have too often forgotten that building a
mathematical culture is a responsibility that has been entrusted with them. It is indeed much
broader than just training the new generation of people who are going to replace us as
specialists. I am afraid that, at this moment, we, as a community, have not put enough thinking to
our broad responsibilities.
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‘LIFE WASN’T MEANT TO BE EASY’: SEPARATING WHEAT FROM CHAFF
IN TECHNOLOGY AIDED LEARNING?

Peter GALBRAITH
University of Queensland
e-mail: p.galbraith@mailbox.uq.edu.au

ABSTRACT

The paper commences by reviewing some of the issues currently being raised with respect to the use of
technology in undergraduate mathematics teaching and learning. Selected material from three research
projects is used to address a series of questions. The questions relate to the use of symbolic manipulators in
tertiary mathematics, to undergraduate student attitudes towards the use of computers in learning
mathematics, and to outcomes of using technology in collaborative student activity in pre-university
classrooms. Resulls suggest that teaching demands are increased rather than decreased by the use of
technology, that attitudes to mathematics and to computers occupy different dimensions, and that students
adopt different preferences in the way they utilise available resources. These outcomes are reflected back on
the literature, and implications for teaching, learning, and research discussed.

KEYWORDS: undergraduate; mathematics; technology; Maple; graphical calculators; attitudes;
collaborative learning.
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1. Introduction

In this paper I want to reflect on outcomes from three research projects that span the interface
from senior school to undergraduate programs. The common elements in the programs are
mathematics, students, and technology. The purpose is to describe findings from the selected
research foci, and relate them to matters raised in the wider literature, and to implications for
theory and practice.

Papers addressing the use of technology in undergraduate mathematics make for interesting and
varied reading. For example:

®  The impact upon educational practice of powerful software like Mathematica has been less
profound than optimists hoped or pessimists feared...tendency to begin by looking for electronic ways of
doing the familiar jobs previously done by textbooks and lectures. (Ramsden, 1997).

e  Of all the flaws in our mathematics training this seemed to us to be the most dangerous and
insidious, for as we removed mathematics from our courses in response to ‘student failings’, the need for
mathematics to do real science was in fact increasing...firstly there was the pious hope that a computer
assisted approach would require less staff...problems arose from attempts to use Mathematica in two ways-
which were incompatible. Was software an arena for exploration of mathematical ideas, or a channel for
their transmission? (Templer et al, 1998)

e  There is growing evidence (in the UK and elsewhere) of a general decline in the mathematics
preparedness of science and engineering undergraduates...one response has been to simply reduce the
mathematics content and to rely on computer-based tools to do much of the mathematical
computation. . .difficult questions (emerge) at the intersection of cognitive and epistemological domains; to
what extent must the structure of mathematics be understood in order for it to be used effectively as a tool?
(Kent & Stevenson, 1999)

These excerpts canvass some of the challenging and problematic issues that are emerging in
undergraduate mathematics education. The discussion that follows will raise issues associated with
the use of symbolic manipulators as central agents for teaching and learning undergraduate
mathematics; with affective characteristics of students using technology in undergraduate
coursework; and with the use of technology in collaborative learning activity. The latter project
has been implemented with pre-university school mathematics students as subjects. The qualities
displayed by the students, and their approaches to learning have implications for the undergraduate

programs in which they subsequently enrol.

2. Background

One fundamental component of any discussion of undergraduate learning is the composition
and background of the student cohort. As noted above (Kent & Stevenson, 1999) the widening of
secondary education, and curriculum decisions in relation to school mathematics, mean that the
mathematical preparedness of entering undergraduates is perceived to be changing. Clearly this
perception is impacting on course design and teaching approaches, in particular in the way that
technology is utilised. However a nostalgic review of the past should not obscure the reality that
there were really no “good old days”. Studies addressing the (mis) understanding of basic concepts
and procedures displayed by undergraduate mathematics students have been reported over a
substantial period of time. Findings from these studies have a common theme viz. that the standard
of performance of the ‘current’ student group is much lower than hoped for, given the investment
of time and energy that has been directed towards the teaching and learning of mathematics over
many years.

Characteristics of flawed performance have been historically consistent over a quarter of a
century:
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...After twelve years of schooling followed by two years of university, they had all but
accepted the mindless mathematics that had been thrust upon them...Misconceptions,
misguided and underdeveloped methods, unrefined intuition tend to remain assignments,
corrections, solutions, tutorials, lectures and examinations notwithstanding. (Gray, 1975)

It appears that students have developed special purpose translation algorithms, which
work for many text book problems, but which do not involve anything that could
reasonably be called a semantic understanding of algebra. (Clement et al., 1980)

Weaker students suffered from the continued misinterpretation that algebra is a
menagerie of disconnected rules to do with different contexts. (Tall & Razali, 1993)

In auending module after module, students tended to ‘memory dump’ rather than to
retain and build a coherent knowledge structure...Their presumed examination strategy
resulted in such a fragile understanding that reconstructing forgotten knowledge seemed
alien to many taking part. (Anderson et al, 1998)

A common thread running through these studies is the powerful negative influence of
fragmented learning, and the apparent absence of cognitive strategies to co-ordinate conceptual
and procedural knowledge. The successive comments can be read as evidence supporting the
constructivist paradigm, for students continue to carry mathematical ‘baggage’ and habits that
inhibit the goals of instructors hoping to provide a fresh beginning in tertiary mathematics. Into the
wake of this historical legacy, curriculum reforms and innovative teaching methods (often
incorporating electronic technologies), have been injected as fountains of hope, at times
accompanied by extravagant claims.

3. Focus A: Computer-Based Undergraduate Programs

The form of computer-based instruction varies widely, indicative of a range of beliefs among
program designers and instructors - both about mathematics, and the nature of mathematics
learning. Olsen (1999) discusses one of the most extensive examples of technology used to provide
automated instruction. She describes (page 31) how politicians visiting Virginia Tech’s
Mathematics Emporium, a 58 000 square foot (1.5-acre) computer classroom:

see a model of institutional productivity; a vision of the future in which machines handle many
kinds of undergraduate teaching duties-and universities pay fewer professors to lecture...On
weekdays from 9 am to midnight dozens of tutors and helpers stroll along the hexagonal pods on

which the computers are located. They are trying to spot the students who are stuck on a problem
and need help.

This program appears to be openly driven by economic rationalism, and an assumption that
mathematics is something primarily to be delivered and consumed. By contrast Shneiderman et al
(1998) describe a model, in which electronic classroom infrastructure is extensive and expensive.
Courses are scheduled into electronic classrooms, following a competitive proposal process,
requiring full use of an interactive, collaborative, multi-media environment. Active engagement
with a variety of learning tools is highly valued here.

In between the extremes occur a variety of models of instruction, concerned in varying degrees
with factory production on the one hand, and student understanding and engagement on the other,
and it is instructive to note comments from those describing the characteristics of such programs:
here are some selections.

Templer et al (1998) noted problems accompanying efforts to provide meaningful learning that
were perceived to arise as a direct result of a symbolic manipulator (Mathematica) environment.
They noted that typically having mastered the rudiments, the majority of students:

“began to hurtle through the work, hell bent on finishing everything in the shortest possible time.”
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The following comment, or a close relative, was noted as occurring frequently among the students:

“ just don’t understand what I'm learning here. I mean all I have to do is ask the machine to solve the
problem and it’s done. What have I learned?”

Kent & Stevenson (1998) in elaborating on their concerns about student quality (see
Introduction), question whether mathematical procedures can be learned effectively without an
appreciation of their place in the structure of mathematics. They argue that unless some kind of
breakdown in the functionality of some concept or procedure (say integration) is provoked,
students do not focus on the essential aspects of that concept or procedure. On the other hand they
observed that the demands for formal precision that a programming environment places on its user,
serves both to expose any fragility in understanding, and to support the building and conjecturing
required in the re (construction) of concepts by learners. This comment interfaces with a debate
about whether computer technology should be employed following prior understanding of
mathematical concepts and procedures (Harris, 2000), or as a means integral to the development of
such understanding (Roddick, 2001).

Interesting comment has been made also about specific issues relating to the introduction of
technology into mathematics learning settings. Templer et al (1998) noted that the screen
dominated the attention of most (although not all) students, and that some balance needs to be
struck between directing students from paper to screen, and vice-versa. A lack of symmetry was
evident in that some students are reluctant to move from screen to text, whereas the move the other
way is more flexibly undertaken. An interesting slant on the ‘how and when’ debate is provided by
the observation that mathematical ‘tools’ are forged through use, in contrast to conventional tools
that are first made and then used. This then calls into question a sequence that seeks first to master
a tool and then apply it. Specifically whether training in a manipulator such as Mathematica,
Derive, or Maple requires prior time and effort, or whether a careful design can enable
mathematics to be learned and applied contiguously with increasingly sophisticated manipulator
use? Clearly this matter is not yet resolved.

3.1 Research Program

The teaching programs that form the background for this section of research took place at the
University of Queensland during the period 1997-2000. As mainstream courses located between
the extremes described above they represent models that may be located comfortably within
present university structures and resources. The programs involve the use of Maple in first year
undergraduate teaching, and issues associated with implementation connect with those of other
researchers as sampled above. In keeping with Kent & Stevenson (1998) there is interest in the
range of questions raised by students as they work with the software, as well as in their
performance. With Templer et al (1998) there is concern with the links between computer-
controlled processes and their mathematical underpinnings, noting the similarities and differences
between the respective symbolism. This project had several aims, including the following:

1. To classify the range of student-generated questions that emerge when learning of
mathematical content interacts with a symbolic manipulator environment.

2. To identify structural properties associated with the Maple environment that can
be identified as linking task demand and student success.

The research was conducted within first-year undergraduate mathematics courses taken by
students studying mainly within Science and Engineering degree programs. As taught in 1999 and
2000 the courses comprised a lecture series complemented by weekly workshops, in which
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approximately 40 students were timetabled into a laboratory containing networked computers
equipped with Maple software. The lecture room was fitted with computer display facilities so
Maple processing was an integral and continuing part of the lecture presentation. To support their
workshop activity students were provided with a teaching manual (Pemberton, 1997), continually
updated to contain explanations of all Maple commands used in the course, together with many
illustrative examples. During laboratory workshops two tutors and frequently the lecturer also,
were available to assist the students working on tasks structured through the provision of weekly
worksheets. The students could consult with the lecturer during limited additional office hours, and
unscheduled additional access to the laboratory was available for approximately 5 hours per week.
The course was also available on the Web. Solutions to the weekly worksheets were provided
subsequently.

The formal course assessment was constrained by departmental protocol and the availability
of facilities. The major component comprised pen and paper exams at mid-semester and at end of
semester (combined 80%). The balance consisted of Maple based assignments and a mark assigned
on the basis of tutorial work (20%). To succeed students needed to transfer their learning and
expertise substantially from software supported environment to written format, which means that
they must be able to develop understanding through the medium with which they work, while
simultaneously achieving independence from it. This involves the ability to learn and maintain
procedures that a Maple environment does not enforce, so that attention is focused on the
relationship between the mathematical demands of tasks, and their representation in a Maple
learningscape.

3.2 Data sources

The data for addressing these questions come from two sources. Tutors assigned to the Maple
workshops were provided with diaries in which they entered, on a weekly basis, examples
indicative of the range of questions raised by students in the course of their workshop activity. The
second source of data was a test given 7 weeks after the program started. This test was a voluntary
exercise, and comprised a series of questions to be addressed with the assistance of Maple in its
laboratory context. It provided formative feedback to the students on their performance, and
ranged from simple school level manipulations to new material introduced in the tertiary program.
Sample questions are included in the appendix, together with their Maple solutions. The test was
directly relevant to preparing for the formal assessment at the end of semester, for the procedures
required were ones that the students need to be proficient with, irrespective of software support.
The tests were analysed and marked by two of the course tutors using criteria designed by the
researchers. For this purpose the quality or indeed presence of a final interpretation of graphical
output was not taken into account, so that the correct/incorrect dichotomy was on the basis of
Maple operations only. On the basis of a review of the 250 (approx.) scripts submitted, it appeared
that the first 16 questions had been attempted seriously by the whole group. For technical reasons
two of these were deemed unsuitable for inclusion, so that responses to 14 questions formed the
final data set.

3.3 Regression Analysis

Performance was analysed in terms of the influence of two categories labelled SYNTAX and
FUNCTION respectively.

SYNTAX: refers to the general Maple definitions necessary for the successful execution of
commands. These include the correct use of brackets in general expressions, and common symbols
representing a specific syntax different from that normally used in scripting mathematical



statements (such as *, A, Pi, g:=).

FUNCTION: refers to the selection and specification of particular functions appropriate to the
task at hand. Specific internal syntax required in specifying a function is regarded as part of the
FUNCTION component, including brackets when used for this purpose. Complexity is represented
by a simple count of the individual components required in successful operation. The way these
definitions work is illustrated by applying them to the examples given in the appendix.

Q2. SYNTAX: Incidence of ~ [2] plus * [2]; total=4.
FUNCTION: General structural form of factor (argument); factor [1] plus ( ) [1] plus
argument entry [1]; total=3.
Q8. SYNTAX: Incidence of ~ [1] plus *[2] plus () [2] plus x1[1] plus := [1]; total=7.
FUNCTION: General structural form of plot (function, domain); plot [1] plus () [1] plus,
[1] plus function entry [1] plus domain entry [1] plus domain specification
[1]; sub-total=6.
General structural form of fsolve (function, domain); sub-total [5] plus
domain specification[1]; total =12.
Ql4. SYNTAX: Incidence of*[2] plus () [3]; plus y [1] plus: = [1]; total=7.
FUNCTION: General structural form of plot(function, domain); sub-total [S] plus
domain specification [1];
General structural form of int(y, integ interval); sub-total [S] plus
(subtraction) [1] plus integration interval specifications [2]; total=14.

Similar pairs were assigned to each of the 14 questions in the sample. Our diagnostic approach
involves scoring on a correct/incorrect basis, as we are not (in this analysis) concerned with
apportioning partial credit as would be necessary if grading student performance. The success rate
on the questions is given by the fraction of students (N~ 250) obtaining the correct answer. We can
regard these as providing a measure of the probability of success of a student from this group on
the respective questions. For the questions in the Appendix the respective values are 0.89, 0.26,
and 0.14. A linear regression analysis was performed using these probabilities as measures of the
dependent variable (success), and SYNTAX and FUNCTION as input variables (Tables 1 & 2).

Table 1: Regression statistics

Multiple R 0.8710

R Square 0.7586

Adjusted R Square 0.7148

Standard Error 0.1419

Observations 14
Table2: Regression Statistics cont

Coefficients Standard t Stat P-value
Error

Intercept 1.0947 0.0961 11.383 2E-07
SYNTAX -0.0482 0.0168 -2.874 0.015*
FUNCTION -0.0396 0.0122 -3.246 0.008**

According to this analysis both the SYNTAX (p<.05) and FUNCTION (p<.01) complexity
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measures contributed significantly to the task demand of the questions.

3.4 Student-generated questions (question 2)

A total of over 1300 questions indicative of the range of concerns displayed by students in the
2000 cohort when working mathematically in a Maple environment, was assembled from the tutor
diaries. The categories were selected using a mix of empirical judgment, theoretical positioning,
and the results of a pilot study in the previous year. The distribution is shown in Table 3.The
number of questions per category varied from a maximum of 333 (24.6%) to a minimum of 29
(2.2%). The number of questions in which some aspect of Maple was unequivocally involved
exceeded 80%.

Table 3: Student Question Types

Question Category Percentage
1. Identify problem caused by a typo (TYPO) 8.4%

2. Resolve syntax error (SYN) 24.6%

3. Problem with function choice (FCHCE) 4.2%

4. Problem specifying function (FSPEC) 14.6 %

5. Stuck on mathematics (STMATH) 149 %

6. Procedurally stuck on Maple (STMAPLE) 19.5 %

7. Interpreting aspects of output (INTOUT) 11.6 %

8. General procedural (PROC) 22 %

The patterns evident in Table 3 confirm that when students interact with mathematics through
technology, questions are generated rapidly and their scope is vastly increased. We can identify at
least four types of inquiry from the responses. Those that are simply procedural (what to do next);
those that are mathematical in the traditional sense; those that are software related (syntax and
symbols); and those that are generated by the interaction of mathematics with software (function
choice and specification). The intensity and scope of student questioning has escalated in
comparison with traditional practice classes, with software the major contributor through
properties of fast processing, scope for formatting and specification errors, just plain knowledge
blocks in bringing the mathematics and software together, together with student initiative in
exploring. In examining the analysis relevant to the first question, it can be observed that while
achieving more rapid and efficient closure to algorithmic procedures the use of Maple has not
reduced the need for the mathematical attributes of understanding and attention to detail. We note
this in the significant impact of the variables SYNTAX and FUNCTION on success rate.
SYNTAX errors penalise those who lack sufficient care in expressing their work symbolically,
while the demands imposed by FUNCTION are proportional to the principles and sophistication of
the associated mathematics. On the other hand, for those students who possess conceptual
understanding and due regard for precision, the Maple environment has provided a means to
progress rapidly and successfully at a greater rate than could otherwise be achieved. Our
conclusion to this point is that there is no ‘free lunch’ (indeed laboratory tutors are lucky to get
lunch at all). The propensity of students to alter their approach to reduce the learning potential
available to them is apparent. Properties arising from the mutual interaction of students,
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mathematics, and technology can support approaches extending beyond the models that still seem
to motivate some proponents of automated learning — models with goals of doing faster and more
cheaply that which was done formerly with blackboard, chalk, and paper. These are limited goals
indeed. The present research contributes to this broader endeavour, both in terms of identifying
and classifying student responses to laboratory activities, and in linking mathematical demand to
the complexity of manipulator operations and task success.

3. Focus B: Student attitudes to mathematics and
technology

While there have been enthusiastic claims for the positive impact of technology on the
teaching and learning of mathematics, systematic evaluations of impact have been harder to
access. And while the study of attitudes in mathematics learning has a substantial history, the
relationship between attirude and performance is not clear-cut although positive correlations have
often been noted between these characteristics. Early claims that affective variables can predict
achievement (e.g. Fennema & Sherman, 1978) have been balanced by later comments (e.g.
Schoenfeld, 1989) indicating that research does not give a clear picture of the direction of causal
relationships. Ma & Kishor (1997) set out to assess the directional relationship between attitude
and achievement but their meta-study was essentially correlational, so that the Tartre & Fennema
(1995) comment that described confidence as the affective variable most consistently related to
mathematics achievement is probably a safe summary of the position.

More recent studies among tertiary students have continued to pose the direction of the
relationship between attitude and performance as an open question. Thus while Tall & Razali
(1993) argued that the best way to foster positive attitudes is to provide success, Hensel &
Stephens (1997) concluded that “it is still not totally clear whether achievement influences attitude,
or attitude influences achievement”. Shaw & Shaw (1997) noted that among engineering
undergraduates the top performing students (at entry) had a much more positive attitude to
mathematics, and lower performing students a commensurately negative one — again leaving the
direction of causality open.

The study of attitudes towards information technology (most frequently computers) has a
shorter but more intensive history, probably because information technology, while newer, is
pervasive in its permeation of curriculum areas. In considering attitudes to information technology
among tertiary students it is useful to note that the disciplinary focus of target groups has tended to
be in areas like Education, Psychology and Social Work. Reports involving mathematics students
appear harder to come by, although some studies have included affective variables almost
incidentally when evaluating general project outcomes (see below). It is this very breadth of
discipline background, which has served to keep the investigation of attitudes to technology at a
general level, appropriate to the majority who will not be called upon to use computers in the same
technical sense as mathematics students working intensively with specialised software.

The relevance of studying attitudes to technology in conjunction with those relating to
mathematics is emphasised and reinforced by the increasing use of technological devices in
mathematics instruction. Several studies refer incidentally to attitudinal impacts as well as
proficiency measures and Mackie (1992) in an evaluation of computer-assisted learning in a
tertiary mathematics course indicated six positive learning outcomes, three of which were related
to attitudinal factors. Park (1993) in comparing a Calculus course (utilising Mathematica) with a
conventionally taught program, found some improvement in disposition towards mathematics and
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the computer in the experimental group. However Melin-Conjeros (1992), in comparing the
performance of a group of Calculus students (equipped with limited access to Derive) with a
control group, noted that the attitude of both groups decreased slightly. It has not been generally
clear in the mathematically focused studies just which ‘attitudes’ have been affected by
technology, as the reporting tends to be non-specific. By inference it appears that it is ‘attitude’ to
mathematics that is referred to, and we are led to consider the implications of technology in
impacting upon component attributes. The relationship between mathematics confidence and
performance noted in the literature (whatever the direction of causality), means that the
implications of a nexus between technology and mathematics needs specific research attention.
The broad reporting of studies on the use of technology in mathematics instruction makes it
difficult to disentangle whether reported affective outcomes are associated with changed attitudes
to mathematics, or are linked directly to the technology. So theoretically we are moved to ask
about the interpretation of outcomes if students possess high mathematics confidence and
motivation, but low computer confidence and motivation, and vice versa. And beyond this,
whether structural changes in attitudes will occur as technology becomes more and more a part of
the students’ life experience, past and present. The specific research purpose addressed here may
be expressed as follows:

To investigate the stability of attitude scales for use in programs in which computer
technology is directed towards assisting undergraduate mathematics learning.

4.1 The Attitude Scales

Given the purpose of developing scales for use in settings involving interaction between
technology and mathematics learning, the positions articulated by Hart (1989), Mandler (1989),
and McLeod (1989, 1994) have proved helpful in fashioning approaches to the definition of terms
and hence instrumentation. The distinction between an attitude and a belief is tenuous to a degree —
an attitude focus has been sought by wording items so that the respondent is personally involved:

e.g. Ifeel more confident of my answers with a computer to help me; rather than

Computers help people to be more confident in obtaining answers.

The students for whom the measures are designed are tertiary undergraduates in mathematics
courses. They have made this a deliberate choice - whereby mathematics has been selected as both
useful in pursuing career aspirations, and as a subject compatible with themselves as individuals.
Hence while an overall monitoring interest in gender and usefulness has been maintained, these
emphases, which have figured prominently in attitude studies among school students, (e.g.
Fennema & Sherman, 1976), have not played a dominant role in the design. Two of the nine
attributes (confidence and motivation) represented in the Fennema-Sherman formulation have been
reflected in scale development, with appropriate items constructed for use by undergraduates. The
choice of these attributes was influenced strongly by the total purpose of designing instruments for
use when computer technology is used in the teaching/learning context. Confidence and motivation
have been selected because of their extensive appearance in the literature for both mathematics and
technology, and because of their potential for discriminating between attitudes when technology
and mathematics interact. These four scales are designed to measure attitudes on both dimensions
so that such differences can be identified and their implications noted. In particular the choice of
confidence and motivation enables two circumstances of particular interest to be identified viz.
situations where students hold strong positive feelings towards mathematics and negative feelings
towards technology, and vice-versa.

A further scale measures the degree of interaction between mathematics and computers that
students perceive they apply in learning situations. The interactive significance of the learning and
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instructional context has been emphasised in general (e.g. McLeod 1989). In a computer
environment students may simply respond to the screen or be active in note making, summarising,
and experimenting. Indeed they may choose not to utilise technology when it is available and
relevant. The physical separation of the learning components; pen and paper, computer screen, and
human brain adds a further dimension to the co-ordinating processes required for effective learning
strategies. The computer-mathematics interaction scale assesses the extent to which students bring
their mathematical thinking into active inter-play with the computer medium.

Within each scale the eight items were arranged randomly with half requiring the reversal of
polarity at the coding stage. Students were asked for a measure of their agreement (or rejection)
with respect to item wording on a Likert scale. The item groups were presented in such a way that
the underlying constructs were unknown to the students. The scale items themselves were
theoretically determined from the respective underlying constructs and from cognate literature.
See (Galbraith & Haines, 1998,2000) and Galbraith, Haines & Pemberton (1999) for more details
on developmental aspects of this work.

4.2 Administration & Outcomes

The instrument was given initially in October 1994 to 156 first year students on entry to
courses in engineering, mathematics and actuarial science at City University, London, and
subsequently to the corresponding cohorts in 1995 and 1996. At the University of Queensland,
Australia the scales were administered to 170 entering engineering undergraduates in 1997, and to
parallel groups in 1998 and 2000. For present purposes the 1994, 1997, and 2000 results have been
selected to be representative across time and place.

The responses have in fact displayed similar patterns across both place and time. Polarities have
been adjusted so that a higher score means more of the property described by the scale label.
Included below for sample scales, are the positively worded item(s) attracting the strongest
support, and the negatively worded item(s) invoking the strongest rejection (L=London,
B=Brisbane). 1.942&B971&B00] means that the item was the second strongest choice of London
’94 students, and the strongest choice of Brisbane 97 students and Brisbane ’00 students etc.

mathematics confidence: I can get good results in mathematics (L941& B971&B002)
*No matter how much I study, math is always difficult for me (L941&
B971&B001)
computer confidence: I am confident I can master any computer procedure that is needed for

my course (L941& B971&B001)
*As a male/female (cross out that which does not apply) 1 feel
disadvantaged in having to use computers (L941& B971&B001)

* jtems whose polarities are reversed in calculating scale scores.

4.3 Scale reliabilities
These were obtained for each scale as shown in Table 4. London data first followed by
Brisbane data in brackets (1997), (2000].

Table 4: Scale Reliabilities (Cronbach o)

mathematics confidence 0.77 (0.85)[0.81]  computer confidence 0.82 (0.88)[0.85]

mathematics motivation 0.80 (0.84)[0.82]  computer motivation 0.85 (0.86)[0.81]
comp/math interaction 0.70 (0.70){0.71]

W
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The scales are coherent with reliabilities from strong to moderate. Internal scale statistics verify
that all items contribute usefully to the respective constructs.

4.4 Scale validity

This rests primarily upon the theoretical base behind the construction of the scales. Additional
structural evidence may be inferred from the sample items given above. For example the two items
attracting the strongest responses for mathematics confidence (expecting good results, and
rejecting that mathematics is difficult irrespective of effort), are both centrally to do with
confidence. The coherence of the scale as indicated in the o value then supports the argument for
validity without examining each additional item. Similar arguments apply to the other scales.

4.5 Differences in Attitude to Mathematics and Computing

A main purpose in this research has been to investigate the extent to which attitudes to
computer use and to mathematics represent different inputs into technology based teaching
contexts involving mathematics learning. In this section the student responses are analysed to
address this issue further. London and Brisbane data indicated as in the previous table.

Table S:Inter-scale correlations

mconf Mmotiv cconf cmotiv cmint
mconf 47(.68)[.51] 29(.2D[.22] .14(.19)[-.04] .13(.16)[.04]
mmotiv .225(.23)[-.07] .29(.29)(.00] .35(.26)[.15]
cconf 71(.75).62] .61(.58)[.56]
cmotiv .68(.66)[.65]

Table 5 displays correlations between the five scales. The entries indicate that for all three
cohorts the confidence and motivation scales are strongly associated within mathematics, and
within computing respectively. However they are less strongly associated across the areas, as
shown by the weak correlation, for example, between mathematics confidence and computer
confidence. The computer-mathematics interaction scale is more strongly associated with
computer confidence and computer motivation scales than with the mathematical scales,
suggesting that computer attitudes are more influential than mathematical attitudes in determining
the level of active engagement with computer related activities in mathematical learning. A Factor
Analysis using the five scales as input variables with a two-factor solution (using oblimin rotation
(SPSS) following a principal components analysis) yielded the loadings shown in Table 6. The
two-factor solution confirms that the computer and mathematics related scales define different
dimensions with computer properties dominant in the interaction scale.

Table 6: Factor Pattern Matrix

Factor 1 Factor 2
mconf .11(-.06)[.02] .55(.87)1.88]
mmotiv .14(.03)(-.02] .85(.89)[.87]
cconf .89(.89)[.84] -03(-.03)[.05]
cmotiv 92(.90)[.89] -.05(.02)[-.11]
cmint .80(.83)(.85] .13(.02)[.06]
Percentage of variance 67.2(69.7)[75.3]
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With respect to the research question we note the properties independently confirmed among
students from different cohorts at different times and in different locations. Two further potentially
significant inferences emerge from this stability and robustness. Firstly the confirmation that
attitudes to mathematics and computing occupy different dimensions (the respective factors are
almost orthogonal), with interaction loading with the computer scales. Secondly, at least an interim
conjecture regarding the following question. Given that students’ prior access to and experience
with computers is continually increasing, will structural differences identified between
mathematics and computer based affective responses diminish with time, or do they represent
distinctive sets of characteristics with a permanent presence in computer-assisted mathematics
learning? The data discussed here suggest the latter.

A final point of interest is associated with the data plotted in Figure 1 which shows an item-by-
item plot of the differences between the means registered by females (F) and males (M) at the
University of Queensland, using 2000 data. .

ATTITUDE (Gender Differences) UQ
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Figure 1. Gender differences on attitude scales (UQ 2000).

The vertical bars delineate the five 8 item scales, which, reading from left to right, are
Mathematics confidence, Computer motivation, Mathematics motivation, Computer confidence,
and Mathematics-Computer interaction. It is clear that females score more highly on the
mathematics scales, and males more highly on the computer scales suggesting a systematic gender
difference exists. A similar pattern occurs within other data. Both of these outcomes (robust scales
and gender differences) suggest implications for the design and implementation of teaching
programs that integrate computer-based activities into mathematics learning.

4. Focus C: Technology augmented Collaborative
Learning

For this third focus the context is changed and the notion of technology broadened to include
graphical calculators and also peripheral devices such as viewscreens. Different criteria apply
when we allow the purpose of technology in mathematics teaching and learning to widen. If we are
concerned purely with mathematical versatility and power, and features such as screen resolution
then a symbolic manipulator may be a preferred choice. If we value portability, accessibility, and
continuous access to a more restricted but still substantial range of mathematical functions then
graphical calculators provide advantages. This is particularly so if the learning environment is a
research interest. In a comprehensive review of research on graphical calculator use (in the decade
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to 1995), Penglase & Arnold (1996) noted a dearth of studies addressing learning environments
and teaching approaches designed to maximise learning benefits. A subsequent review of research
(Asp & McCrae, 2000) commented that this particular gap did not appear to have been seriously
addressed, although substantial work on other aspects of graphical calculator use was noted. The
teaching-learning environment remains an important context for examining alternative ways in
which technologies, teachers, and students, combine in the pursuit of mathematical goals when
these are not obscured by narrow definitions of desired outcomes.

Sociocultural perspectives on learning emphasise the socially and culturally situated nature of
mathematical activity, and view learning as a collective process of enculturation into the practices
of mathematical communities. The classroom as a community of mathematical practice supports a
culture of sense making, where students learn by immersion in the practices of the discipline.
Rather than relying on the teacher or textbook as an unquestioned external authority, students in
such classrooms are expected to defend and critique ideas by proposing justifications, explanations
and alternatives. Collaborative practices are called for, and in considering alternative models
Brandon (1999) has usefully pointed out that the ‘C’ in Collaborative Learning has been used
ambiguously to refer to both co-operative based learning (group members share the workload); and
collaboration-based learning (group members develop shared meanings about their work). While
interrelated there is a clear difference in the respective emphases. Collaborative activity in this
latter sense, is characterised by equal partners working jointly towards an end (Anderson, Mayer,
& Kibby, 1995), as a co-ordinated activity directed towards construction and maintenance of
shared meaning and understanding (Rochelle & Teasley, 1995). A key element is elaboration
(Webb & Palincsar, 1996), through which students: provide specific examples to illustrate
concepts; use multiple representations (charts, diagrams etc) to explain concepts; create and
evaluate analogies; translate terms; provide detailed descriptions of how to perform tasks or
illustrate differences between concepts; provide detailed justifications for their problem solving; or
use observations and evidence to support opinions or beliefs. These characteristics of collaborative
learning, that emphasise the social construction of knowledge and shared conceptions of problem-
based tasks, carry across as important elements in the design of computer based - supported
collaborative learning (CSCL) as described by Brandon (1999). In generalising this property
beyond computers to encompass technology in general we distance ourselves from models of ‘Co-
operative learning’ wherein members of a group of peers are assigned individual roles (e.g.
recorder, checker) prior to structured group activity. In this model role assignment may interfere
with group processes by overemphasising organisational tasks at the expense of learning
processes. Role assignment effectively restricts the opportunity of individuals to engage with
problems freely, and to use their knowledge in the widest and most relevant way. This is in
fundamental conflict with the goals that motivate a community of scholars.

A central tenet of sociocultural theory is that human action is mediated by cultural tools, and is
fundamentally transformed in the process (Wertsch, 1985). The rapid development of computer
and graphical calculator technology provides numerous examples of how such tools transform
mathematical tasks and their cognitive requirements.

The approach then is predicated on three basic assumptions.

1. Human action is mediated by cultural tools, and is fundamentally transformed in the
process.
2. The tools include technical and physical artefacts, but also concepts, reasoning, structures,

symbol systems, modes of argumentation and representation.
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3. Learning is achieved by appropriating and using effectively cultural tools that are
themselves recognised and validated by the relevant community of practice.

The approach is informed by a Vygotskian framework, that has moved beyond the most widely
known interpretation of the Zone of Proximal Development (ZPD) as the distance between what a
learner can achieve alone and what can be achieved with the assistance of a more advanced partner
or mentor. Two other representations are of particular relevance to our learning context. These are
firstly the conceptualisation of the ZPD in egalitarian partnerships. This view of the ZPD,
involving equal status relationships, argues that there is learning potential in peer groups, wherein
students have incomplete but relatively equal expertise — each partner possessing some knowledge
and skill but requiring the others’ contribution in order to make progress. In the research context
this feature becomes relevant through the collaborative activity of students in bringing technology
to bear on mathematical tasks with varying levels of individual technological and mathematical
expertise. One advantage of these groups is that, when the teacher withdraws, the students are
provided with the opportunity to own the ideas they are constructing, and to experience themselves
and their partners as active participants in creating and testing personal mathematical insights.

A second extension of the ZPD concept is created by the challenge of participating in a
classroom culture constituted as a community of practice. Students as participants in a learning
community are viewed as having partially overlapping ZPDs that provide a changing mix of levels
of expertise that enables many different productive partnerships and activities to be orchestrated.
(Brown et al., 1993; Brown & Campione, 1995) Through the establishment of a small number of
repeated participation frameworks such as teacher-led lessons, peer tutoring, and individual and
shared problem solving, students are challenged to move beyond their established competencies
and adopt the language patterns, modes of inquiry, and values of the discipline. Such a classroom
environment, representative of an active community of learners, is then augmented by the
availability of technology as another agent in the search for powerful and meaningful
mathematical learning and application.

To elaborate then, technology is viewed as one of several types of cultural tools - sign systems
or material artefacts - that not only amplify, but also re-organise, cognitive processes through their
integration into the social and discursive practices of a knowledge community (Resnick,
Pontecorvo & Siljo, 1997). The amplification effect may be observed when technology simply
supplements the range of tools already available in the mathematics classroom, for example, by
speeding tedious calculations or verifying results obtained by hand. By contrast, cognitive re-
organisation occurs when learners’ interaction with technology as a new semiotic system
qualitatively transforms their thinking; for example, use of spreadsheets and graphing software can
alter the traditional privileging of algebraic over graphical or numerical reasoning. Accordingly,
learning becomes a process of appropriating cultural tools that transform the relationships of
individuals to tasks as well as to other members of their community (Doerr & Zangor, 2000).

This conceptualisation of technology usage in mathematics classrooms differs in its emphasis
in that, in addition to its contribution in addressing mathematical concepts and processes, it
encompasses also the sociocultural dimension: interactions between teachers and students,
amongst students themselves, and between people and technology, in order to investigate how
different participation patterns offer opportunities for students to engage constructively and
critically with mathematical ideas. That is, while technology may be regarded as a mathematical
tool (amplifies capacity), or as a transforming tool (reorganises thinking), it may also be regarded
as a cultural tool (changes relationships between people, and between people and tasks).
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5.1 Research procedures

A team of researchers, comprising a mix of academics and teachers, has been investigating the
potential of collaborative learning in mathematics at pre-university level for a number of years.
The student subjects are serious students of mathematics, many of whom enrol in undergraduate
degrees in science and engineering in the year following their participation in the study. One
particular study followed a group of students during their final two years of secondary education.
On average a lesson was observed and videotaped every one to two weeks, with more frequent
classroom visits scheduled if a technology intensive approach to a topic was planned. Each student
had permanent access to a graphical calculator and spreadsheets were available as a normal
classroom resource. Audiotaped interviews with individuals and groups of students were
conducted at regular intervals to illuminate factors such as the extent to which technology was
contributing to the students’ understanding of mathematics, and how technology was changing the
teacher’s role in the classroom. This data triangulated information obtained from analysis of
videotapes and questionnaires. At the beginning of the course and at the end of each year students
completed a questionnaire on their attitudes towards technology, its role in learning mathematics,
and its perceived impact on the life of the classroom.

The quality of mathematical exchanges is captured on the videotape record and is not reported
in this paper. The interest here is in characteristics displayed as students work collaboratively,
aided by technology, as a means towards collective and individual mathematical competence.
While the most illuminating data are in the form of videotaped segments, featuring student and
teacher discourse, (Goos et al., 2000) for present purposes we skip to a summary of some of the
findings related to the learning characteristics identified. These have to do with the different ways
in which students use technology, and see themselves in relation to it.

5.2 Metaphors for technology use
Observations have led to the development of a descriptive taxonomy of sophistication with
which students work with graphical calculators. This is expressed in terms of metaphor.

Technology as Master. The student is subservient to the technology-a relationship induced by technological
or mathematical dependence. If the complexity of usage is high, student activity will be confined to those
limited operations over which they have competence. If mathematical understanding is absent, the student is
reduced to blind consumption of whatever output is generated, irrespective of its accuracy or worth.
Technology as Servant. Here technology is used as a reliable timesaving replacement for mental, or pen and
paper computations. The tasks of the mathematics classroom remain essentially the same—but now they are
facilitated by a fast mechanical aid. The user ‘instructs’ the technology as an obedient but ‘dumb’ assistant
in which s/he has confidence.

Technology as Parmer. Here rapport has developed between the user and the technology, which is used
creatively to increase the power that students have over their learning. Students often appear to interact
directly with the technology (e.g. graphical calculator), treating it almost as a human partner that responds to
their commands — for example, with error messages that demand investigation. The calculator acts as a
surrogate partner as students verbalise their thinking in the process of locating and correcting such errors.
Calculator or computer output also provides a stimulus for peer discussion as students cluster together to
compare their screens, often holding up graphical calculators side by side or passing them back and forth to
neighbours to emphasise a point or compare their working

Technology as an Extension of Self. The highest level of functioning, in which users incorporate
technological expertise as an integral part of their mathematical repertoire. The partnership between student
and technology merges to a single identity, so that rather than existing as a third party technology is used to
support mathematical argumentation as naturally as intellectual resources.

Having constructed the taxonomy, through example and repeated observation the research team
asked a group of students near the end of their course to reflect on its structure in relation to
themselves as individuals. A selection of responses from the 2000 cohort is given below.
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Master (M): because I often don’t understand how to use every specific function of the technology,
thereby limiting my use of such technology. I often don’t know if I've used it correctly and as a
consequence I can’t be sure if my answer is correct or not.

[ think I’m between master and servant. 1 tell the calculator what to do sometimes but only stick to
what I know usuatly. [ don’t know exactly what it allows me to do, and if I haven’t been taught, [
won’t look for it.

Servant (S): because I do not have enough knowledge of technology to be able to investigale new
concepts. However [ do regularly use it for familiar tasks purely as a time saver and to verify and
check my answers.

Partmer (P): Because my calculator has become my best friend. His name is Wilbur. Me and
Wilbur go on fantastical adventures together through Maths land. I don’t know what I’d do without
him. I love you Wilbur.

Extension of Self (ES): Because my calculator is practically a part of myself. It’s like my 3" brain. |

use it whenever it can help me do anything faster.

The student group had no problem reaching a personal decision and justifying it, and the 15
responses from the Year 12 students produced the following distribution. M (1), M-S (1), S (7), P
(2), ES (4).

Following the earlier choice of metaphor to describe the taxonomy of sophistication with
which students may work with technology, observation and discussion then suggested that a
similar taxonomy may be useful in classifying instructional uses of technology.

Technology as Master

Here the teacher is subservient to the technology, and is able to employ only such features as
are permitted either by limited individual knowledge, or force of circumstance. This seems clearly
the case in large-scale transmissive programs where, as described by Olsen (1999), helpers are
reduced to assistants responding to students on the basis of what the software has generated, and to
marking computer generated quizzes. Here course organisation forces the relationship. However
this circumstance may also apply in classrooms where teachers have individual autonomy. As
described by Stuve (1997), pressure to be seen to implement technology following ‘training’,
results in implementation dominated by whatever basic skill has been acquired, without
consideration of impact beyond the present.

Technology as Servant

Here the user may be knowledgeable with respect to the technology, but uses it only in limited
ways to support preferred teaching methods (Thorpe, 1997). That is the technology is not used in
creative ways to change the nature of activities in which it is used. For example just as a calculator
can be restricted to the purpose of producing fast reliable answers to routine exercises, a
viewscreen may be limited to providing a medium for a teacher to demonstrate output to the class
as an alternative to chalkboard, or a computer to crunching numbers faster.

Technology as Partner

Here the user has developed ‘affinity’ with both the class and the teaching resources available.
Technology is used creatively in an endeavour to increase the power that students collectively
exercise over their learning, rather than exercising it over them (Templer et al., 1998). This can
occur both in the use of mathematically based technology (calculators and computers), for the
purpose of enhancing individual prowess, and in the use of communications technology to enhance
the quality of class learning through sharing, testing, and reworking mathematical understandings.
For example, instead of functioning as a transmitter of teacher input, a viewscreen may be a
vehicle for engendering otherwise non-existent student participation or act as a medium for the
presentation and examination of alternative mathematical conjectures.
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Technology as an Extension of Self

This is the highest level of functioning, in which powerful and creative use of both
mathematical and communications technology forms as natural a part of a teacher’s repertoire as
fundamental pedagogical skills and mathematical knowledge. Writing courseware to support and
enhance an integrated teaching program would be an example of operating at this level. Successful
use of the rich electronic classroom (Shneiderman et al., 1998) would appear to demand this kind
of expertise. However, ironically, too much sophisticated technology may exact a price! The sheer
volume of technological choice can reduce opportunities to explore fully creative uses of
individually productive items. It is noted that these levels of operating are neither necessarily tied
to the level of mathematics taught, nor to the sophistication of technology available. Simple
mathematics and basic technologies are sufficient to provide a context for highly creative teaching
and learning. Conversely, powerful computers and.expensive infrastructure can be associated with
programs that are limited in what they are able to achieve, or indeed attempt.

6. Reflections

It seems almost fatuous to say that (without further qualification) the term ‘technology assisted
learning’ is effectively meaningless. Much has been written that belongs to the genre of ‘show and
tell’ rather than to information carefully collected and rigorously scrutinised. Almost anything can
be argued to have enjoyed some success, in some form, with someone, at some time. Over a
decade ago James Fey surveyed developments in the use of technology in mathematics education
to that date. In noting that there was no lack of speculative writing on the promise of revolution
that would follow from the application of various calculating and computing tools, he drew
attention to the paucity of data available to back extravagant claims.

It is very difficult to determine the real impact of those ideas and development projects in the daily life of
mathematics classrooms, and there is very little solid research evidence validating the nearly boundless
optimism of technophiles in our field. (Fey, 1989)

It is bemusing to reflect that this comment seems as relevant today as it was over a decade ago,
even if the questions have become more refined. The literature confirms the existence of diverse
factors that impact on the development and testing of theoretical frameworks, and on the conduct
of practice. Such factors include not only inter-product competition (competing brands and genres)
that extends also to users, but competing educational philosophies with respect to the teaching and
learning of mathematics, and institutional politics.

It seems that one viewpoint of significance at all levels of debate, is whether technology is
regarded primarily as a learning tool or a power tool. If we see calculators and computers as
power tools then we use them as a high tech means of accomplishing mathematical tasks more
quickly, or attacking problems that are intractable without the technology. Either way their use in
these ways is enabled by the expert knowledge base of the user. Some of the most incisive
discussion in the literature concerns the debate about whether students need to understand the
mathematics independent of the technology, or whether it can be learned through technology. This
raises the question of using technology as a learning tool, and what this means for educational
practice. Those who treat mathematics as something to be transmitted and consumed, and see
technology essentially as a means to this end, ignore both the message of history and the evidence
accumulating from studies that pay attention to the learning context (e.g. Templer et al, 1998; Kent
& Stevenson, 1999). Our work inhabits but a small corner of this domain: however consistent
observations have indicated that access to technology impacts not only on task requirements, but
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on the culture of the learning approach, and on ways in which students reposition themselves with
respect to the technology, the task, and each other. The fact that pages of output can be generated
when operating with software packages gives a misleading measure of learning productivity, and
creates even further need to subject such output to quality control and follow-up. Ironically this
requires additional human resources at a time when institutional managers are looking to
technology to reduce this very thing. The point has been underlined (Olsen, 1999) following her
description of the 1.5 acre budget driven automated instruction initiative at Virginia Tech.

Instructional software issues are unlikely to be resolved quickly... If we want the software to help at

all... ir’s got to understand how students might misconceive what is presented to them--and to

figure that out from the student’s response. And right now, only people do that well. (p. 35)

The search for complexity measures for demands incurred in using Maple software, is an
intended contribution to the ‘replacement’ debate - about the extent to which a student can adopt a
black box mentality to software and focus on the purpose of a task. While results are preliminary
they do not lend any support to the view that mathematics and technology are separable in the
learning phase, and that technology essentially is a means to stronger mathematical capability
among students. Put another way, it cannot be assumed that students use technology as experts use
a'power tool even when provided with sufficient enabling information. If learning is to be achieved
then technology’s role in initiating and consolidating understanding needs further intensive study
and careful documentation. It is doubtful that enough of this is being done despite the plethora of
projects using technology for instructional purposes. Studies such as Drijvers (2000) help to
reinforce that obstacles arising when students work with computer algebra systems are generated
by the interaction of mathematical and technological aspects. The idea then, of technology as
simply a power tool to enable stronger mathematics, or as a replacement for transmissive models
of teaching, is effectively rebutted by an increasing number of studies.

Work on attitudes has tended to be blurred by interactions between computers, calculators, and
mathematics in programs involving technology-aided learning. Studies over many years have
found that attitude and performance are related in school mathematics, although the direction of
causality has been open to question. Several papers over the past five years have specifically made
reference to attitude in relation to performance in undergraduate programs (e.g. Shaw & Shaw,
1997; Hensel & Stevens, 1997). Suspicion that in technology aided learning settings, confidence
and motivation (in mathematics and technology respectively) may occupy different dimensions has
been consistently confirmed in our research. Furthermore the results appear to be stable with no
change apparent over a period of six years using students in different locations. An anticipated
éoftening of the technology data due to increasing access and experience with calculators and
computers has not eventuated. Gender differences in attitudes to mathematics and computers
respectively, favouring females for mathematics and males for computers raise additional issues
for course design, when technology and mathematics are brought together in undergraduate
programs.

Studies on the impact of calculators and computers as cultural tools that change the nature of
learning and relationships, as distinct from their agency as mathematical aids, promise to expand
and challenge notions of what can be achieved in technology aided instruction. The emergence of
different levels with which students see themselves using and interacting with calculators and
computers also challenge approaches that see technology purely in terms of increasing
mathematical power. Failure to recognise taxonomies of competence, preference, and confidence
in using technologies increases the risk that inappropriate expectations and methods of instruction
will drive course design and implementation. The risk that through unquestioned acceptance of a
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perceived authoritative source, a ‘tyranny of the text’ becomes replaced by a ‘tyranny of
technology’ emphasises the role of the teacher as a custodian of mathematical values that must be
continually articulated and embedded in instructional practices (Guin & Trouche, 1999). As the
use of calculators and computers as cultural and mathematical tools in communities of practice
approaches to learning become more prevalent in secondary education, there are implications for
the design and implementation of undergraduate courses into which the students subsequently
flow.

Finally, in order to make more systematic progress in evaluating quality and identifying
problems we need to look at improving the relevance of research methods. It is probably fair to say
that a substantial majority of us received research training within the scientific paradigm of the
controlled experiment. Many have questioned its relevance in testing for outcomes of quality in
educational settings-many more need to do so. What is valuable in knowing that approach A
achieves statistically better results than approach B when both are terrible, and about 5% of
variance is involved? Furthermore it is frequently not clear that the condition being ‘tested’ has
been faithfully applied. Some unsuccessful attempts to replicate the success of Schoenfeld’s
(1985) problem solving program with College students provide cases in point. Johnson & Fishbach
(1992) and Lester et al., (1989) reported studies that foundered in their attempts to replicate the
success of the teaching approach advanced by Schoenfeld. While these studies specifically
implemented elements of that teaching program (in terms of strategies), they did not nurture and
sustain the culture of “mathematics community” that was of equal or greater importance. In the
former study, the College students, used to other methods of mathematics teaching, were
uncomfortable with the learning approaches and setting. On the other hand, their teachers were
uncomfortable with the teaching style required of them, which was substantially different from that
developed over many years. No positive change was achieved over a ten-week period. In the latter
study, two classes of primary year 7 students showed little ‘improvement’ in metacognitive control
behaviours over the seven weeks of the trial. These students had limited domain specific
knowledge on which to draw, were reluctant to reflect on strengths and weaknesses, and
inexperienced in the small group settings which formed a key part of the instructional program.
Failure to establish a community of practice culture renders invalid attempts to evaluate the
effectiveness of teaching strategies that necessarily draw from such a culture. Yet parallels to this
failure, often compounded by inadequate reporting, torment study after study. This is quite apart
from an increasing concern with ethical considerations that would question the integrity of studies
that allocate a group of subjects to a ‘treatment’ believed to be inferior! The social context of the
classroom is an inextricable component in the development of a community of practice. It becomes
central therefore to locate identifiers by means of which the operation of such a community can be
recognised, monitored and developed, and within which the achievements of teaching approaches
can be assessed. Such methods involve establishing criteria against which to measure the quality of
outcomes, for which purpose the use of videotapes, transcript analysis, and other methods of
triangulation augment written data. Qualitative research methods and Grounded Theory
approaches need to complement appropriate applications of quantitative methods more than they
have so far managed to do. The development and implementation of rigorous research within a
rich environment of outcomes is perhaps our greatest challenge in seeking to test and improve the
effectiveness of instructional strategies involving technology.

I would like to record my appreciation for the inspirational work of colleagues as
collaborators in various research projects: Chris Haines (City University, London: Mathematics);
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Mike Pemberton (University of Queensland: Mathematics); Merrilyn Goos and Peter Renshaw
(University of Queensland: Education); and Vince Geiger (Hillbrook Anglican School).
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Appendix

Sample Questions

(Questions in italics: Maple commands in bold: Maple output in ordinary type)
Q2. Factorize x3 - 6x2 +1lx-6

Maple Solution

> factor(x"3-6*x/2+11%x-6);

x-1Dx-2)(x-3)
Q8. Find where the graph of x2sinx + xcosx for 0sx<5is:
(a) above the x — axis (b) below the x —axis (¢) cuts the x— axis.

Maple Solution

> plot(x*2*sin(x)+x*cos(x),x=0..5);

> x1:=fsolve(x"2*sin(x)+x*cos(x),x=2..3);
x1 :=2.798386046

Q14. Plot the graph of f(x) = (x-1)(x-2)(x-3) and use this to find the physical area under

the graph from x=1 to x=3.
Maple Solution

> yi=(x-1)%(x-2)*(x-3);
> plot(y,x=0..4);
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> int(y,x=1..2)-int(y,x=2..3);
> 172
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THE ROLE OF VISUALIZATION
In the Teaching and Learning of Mathematical Analysis

Miguel de GUZMAN
Universidad Complutense de Madrid

guzman@mat.ucm.es

ABSTRACT

In this paper a brief introduction is presented to the nature and different types of mathematical visualiza-
tion. Then we shall examine some of the influences visualization has had on the development of mathematics
and its teaching, exploring in particular its current status. We then inspect the particular role it may have in
what concerns mathematical analysis and the difficulties that surround the correct use of it, with or without
the computer. Finally a sample of exercises in visualization in basic real analysis is presented in order to show
with examples its possible role in the teaching and learning of this subject.
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1 What is visualization in Mathematics?

The following story may convey the savor of visualization much better than many analyses. The
protagonist here is the great Norbert Wiener, but I am sure that most mathematicians have been able
to observe something similar happening to more than one of his or her teachers or colleagues. Wiener
was giving one of his lectures at the MIT before a numerous audience.He was immersed in the intricate
details of a complicated proof. The blackboard was almost full of formulas and he was marching on
unblinkingly towards his goal. Suddenly he got stuck. One minute, two minutes,... To the students it
seemed the end of the world... The great Wiener stuck...incredible! He was looking at the formulas, he
was messing his hair, he was humming..., until he seemed to know what to do. He went with decision
to one of the still empty corners of the blackboard and there he stayed for a little while drawing some
mysterious pictures. He did not say a word, his great shoulders almost concealing from everybody
what he was doing. Finally he sighted with relief, erased with care what he had drawn and went back
to the point he had interrupted his proof and concluded it without any hesitation.

Mathematical concepts, ideas, methods, have a great richness of visual relationships that are intu-
itively representable in a variety of ways. The use of them is clearly very beneficial from the point of
view of their presentation to others, their manipulation when solving problems and doing research.

The experts in a particular field own a variety of visual images, of intuitive ways to perceive and
manipulate the most usual concepts and methods in the subject on which they work. By means of
them they are capable of relating, in a versatile manner the constellations of facts and results of the
theory that are frequently too complex to be handled in a more analytic and logic manner. In a direct
way, similar to the one in which we recognize a familiar face, they are able to select, through what to
others seems to be an intricate mess of facts, the most appropriate ways of attacking the most difficult
problems of the subject.

The basic ideas of mathematical analysis, for instance order, distance, operations with numbers,...
are born from very concrete and visualizable situations. Every expert is conscious of the usefulness to
relate to such concrete aspects when he is handling the corresponding abstract objects. The same thing
happens with other more abstract parts of mathematics. This way of acting with explicit attention to
the possible concrete representations of the objects one is manipulating in order to have a more efficient
approach to the abstract relationships one is handling is what we call mathematical visualization.

The fact that visualization is a very important aspect of mathematics is something quite natural if
we have into account the meaning of the mathematical activity and the structure of the human mind.
Through the mathematical activity man tries to explore many different structures of reality that are
apt to be handled by the process we call mathematization in the following way. Initially we have
the perception of certain similarities in the real objects that guide us to the abstraction from these
perceptions of what is common and to submit it to a peculiar rational and symbolic elaboration that
allow us to efficiently handle the structures which lie behind such perceptions.

Arithmetic, for example, arises with the intention to rationally dominate the multiplicity what is
present in reality. Geometry tries to rationalize the properties of the form and extension in space.
Algebra, in a second order abstraction process, explores the structures lying behind numbers and
operations related to them. It deals with a sort of symbol of symbol. Mathematical analysis arose in
order to deal with the structures of change of real things in time and in space,...

The mathematization process has proved to be extraordinarily useful in order to better understand
and manipulate the common structures of many real things. Our human perception is very strongly
visual and so it is not surprising at all that the continuous support on its visual aspect is so entrained
in many of the tasks related to mathernatization, not only in those that, like geometry, deal more
directly and specifically with spatial aspects, but also in some others, like mathematical analysis, that
arose in order to explore different kinds of changes occurring in material things.

Even in those mathematical activities in which abstraction seems to take us much beyond what is
perceptible to our material vision, mathematicians very often use symbolic processes, visual diagrams,
and many other forms of mental processes involving the imagination that accompany them in their
work. They help them to acquire what we could call a certain intuition of the abstract, a set of mental
reflexes, a special familiarity with the object at hand that affords them something like a holistic,
unitary and relaxed vision of the relationships between the different objects of their contemplation.
In this way they seem to know in advance how these different objects are going to react when they
introduce some convenient changes in some part of the structure.

Visualization appears in this way like something absolutely natural not only in the birth of the
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mathematical thought but also in the discovery of new relations between mathematical objects and
also, of course, in the transmission and communication processes which are proper to the mathematical
activity.

2 Different types of visualization

Our human visualization, even the apparently superficial phenomenon that we call " vision” in its more
physiological sense, is not a process that merely involves the optical processes of our eyes. It is much
more complex, since it entails in a quite important form, the activity of our brain. Perhaps in the
newly born child the phenomenon that takes place is much more similar to the one occurring in a
photographic camera, but the cerebral processes that immediately start taking place in his brain cause
that, after a rather short time, after experimenting with the objects of the world outside the child
transforms his vision into a true mental interpretation of what before was a simple physical optical
phenomenon.

The visualization experiences with wlich we are going to deal here have a much niore interpretation
weight. In many of the forms of visualization we are going to experiment we have to follow a true
process of codification and decodification in which intervene very crucially a whole world of personal
and social interchanges, a good part of them firmly rooted in the history of the mathematical activity.

This makes the process of visualization largely based in the interaction with many person around
us and in the immersion and enculturation in the historical and social context of mathematics. Visu-
alization is therefore not an immediate vision of the relationships, but rather an interpretation of what
is presented to our contemplation that we can only do when we have learned to appropriately read the
type of communication it offers us. Here we have an example.

The following figure uses to be presented as a paradigm of a visualization in mathematics, a proof
of Pythagoras’ theorem. Probably the novice who looks with attention to this drawing arrives to
see, with some luck, two equal squares that have been dissected in two different ways and perhaps
will be able to understand, through the written indications, that the square over the hypotenuse of
the rectangular triangle that arises, that seems to be copy of the other two that appear in different
positions in the figure, have an area that is equal to the sum of the areas of the other two squares over
the other two sides of the triangle.
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But in order to arrive to the Pythagoras’ theorem it will be necessary that he may prove that those
triangles marked with T are of the same area, and that this same situation appears in any possible
rectangular triangle, i.e. he needs to perceive that he is having before his eyes a generic situation.

The purported absolute immediacy of this dissection in order to show the general truth of Pythago-
ras’ theorem is to a certain point deceiving, since it requires for such a purpose an involved work of
decodification that is obvious to the expert, but far to be open to the novice. This consideration is
one of the reasons why the introduction to visualization, for example in the teaching and learning
of mathematics, is not an easy task that requires the clear conscience that the transparency of the
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process, perhaps real for the teacher because of the familiarity, acquired by the continued practice
along many years, may be absent at all for the one who starts with this type of process.

But the presence of this type of decodification process in any visualization makes clear that mathe-
matical visualization is not going to be a univocal term at all. According to the degree of correspondence
between the mathematical situation and the concrete way of representation, that can be more or less
close, natural, symbolic, even more or less personal and perhaps incommunicable... there are going
to be many different types of visualization. In what follows I am going to try to distinguish several
of them. At the light of some examples we can try to perceive the deep differences among them and
some of the difficulties inherent to their practice.

Isomorphic visualization

The objects may have an ”exact” correspondence with the representations we make of them. This
means that, in principle, it would be possible to establish a set of rules to translate the elements of
our visual representation and the mathematical relations of the objects they represent they represent.
In this way the visual manipulations of the objects could be transformed, if we so desire, into abstract
mathematical relationships. This kind of representation might be called an isomorphic visualization.

The modelization of a mathematical problem, which in many cases is possible, may be in many
cases an isomorphic visualization. Its usefulness is rather manifest. The manipulation of the objects
that we perceive with our senses or with our imagination is normally easier and more direct than the
handling of abstract objects, that frequently may be rather complicated in its structure.

An example: Josephus problem.

In his book De bello judaico, Heggesipus tells about the siege by the Romans of the city of Jotapat.
Josephus and other 40 Jewish men took refuge in a cave near the city and decided to kill themselves
rather than surrendering. To Josephus and to a friend the idea was not making them very happy.
They decided to take their measures. They suggested to do it in a certain order. All men should set
themselves in a circle and, starting by an enthusiast who by all means wanted to be the first in killing
himself, they would commit suicide by turn counting three. Josephus’s idea, of course, was to place
himself and his friend in such a way that they would be the two last ones in this order and so, being
in absolute majority after the massacre of all the others, to decide to stop it. What places should
Josephus and his friend take in order to accomplish their purpose?

The solution is rather easy. One takes 41 little stones, marks each one of them with a number 1,
2, 3,..., 41. One simulates the suicides and looks which two stones are left at the end.

The handling of the problem is clearly isomorphic and shows one of the shortcomings that can
accompany visualization. We have been able to solve this particular problem, but the solution is going
to vary when, for instance, there are 47 instead of 41 stones or when one counts five instead of three.
Our visualization solves our particular problem, but the mathematician is interested in knowing what
to do when there are m stones, one puts them in a circle and takes out the n-th one starting by a
particular stone in a definite orientation.

We are confronted with a situation similar to the previous one concerning Pythagoras theorem.
Will it happen in general what I observe in this particular triangle? There, after a rather simple
conceptual elaboration one can arrive to the fact that the situation is in fact generic, independent of
the rectangular triangle considered. Here, however, our manipulation only has solved our particular
problem. Not a little achievement and besides, from such concrete manipulations very often arise very
illuminating ideas which lead us to the general solution of our abstract problem.

A great part of our visualizations in mathematical analysis is of this isomorphic kind. They are
probably the ones that mathematicians accept and use more profusely without objections. The visu-
alization of the real numbers on the real line or that of the complex numbers by means of the points
in the plane not only made its incursion in mathematics without resistance, but in the case of the
complex numbers (Argand, Gauss), it was the means that made possible the general acceptance of
this expansion of the number system against the resistance to admit complex or imaginary numbers
as decent and honest mathematical objects.

In any case one has to be aware that our visualizations contain many aspects that have to do with
tradition, tacit agreements, consensus and this makes them dependent in their use of a whole code to
understand them that has to be transmitted, acquired and made sufficiently familiar to each one of
their users. It is true that “an image is worth a thousand words”, but this presupposes an important
condition, that the image comes to be correctly deciphered and understood. Otherwise an image is
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worth nothing,.

Another example of isomorphic visualization: Young’s theorem.

Young’s theorem, an inequality with plenty of important applications in analysis affirms the fol-
lowing.

Let y=f(x) be a real function defined on [0,inf) such that f(0) =0, f(z) > 0 for each z > 0, f is
continuous and strictly increasing on [0,inf) and f(z) tends to infinity when x tends to infinity. Let
y=g(x) the inverse function of f, i.e. for each x in [0,inf) we have g(f(x))=x. Then, for each pair of
positive numbers a and b, one has

ab < /Oa f(z)dz + /{;bg(z)dz

The proof of this interesting result becomes obvious by merely inspecting the following figure

The inequality stated above simply affirms that the area of the rectangle with opposed vertices
at the points (0,0) and (a,b) is less than or equal than the sums of the shaded areas S and T of the
picture. The equality is exactly obtained when b=f(a), i.e. when the point (a,b) is a point of the graph
of y=f(x). It would not be difficult at all to translate this into a completely formalized proof, if one
has to content somebody with a especial desire of rigor.

Homeomorphic visualization

In this kind of visualization that I am calling ”homeomorphic” some of the elements have certain
mutual relations that imitate sufficiently well the relationships between the abstract objects and so they
can provide us with support, sometimes very important, to guide our imagination in the mathematical
processes of conjecturing, searching, proving,... Let us analyze an example that might be useful in
order to make clear the nature of the homeomorphic visualization.

The Schrider-Bernstein theorem

Let A and B be two sets. Assume there exists an injective function f (i.e. a one-to-one mapping)
from A to B and another injection g from B to A. Then there is a bijection h from A to B, i.e. an
injection h such that h(A)=B. The following simple and elegant proof which appears in the classical and
well-known textbook Modern Algebra, by Birkhoff and MacLane, is based on a convenient visualization
of the sets and mappings of the statement. The presentation will be very succinct but, I hope,
sufficiently clear.

We start by representing the two sets A and B by the two straight lines of the figure above and
the functions f and g by the descending arrows of the figure. We consider their inverse functions f -t
and ¢~! and represent them by the corresponding ascending chains (we shall also consider as a chain
a point in A or B that has no ascending arrow starting from it). We consider the ascending chains of
linked arrows and classify them in the following way:

Class 1: ascending chains that end in A

Class 2: ascending chains that end in B

Class 3: chains that never end, i.e. chains that either are cyclic or pass through infinite points.

It is easy to see that this classification of the chains induces a classification of the points of A (and
of B) into three disjoint sets according to the type of chain that goes through it.
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And now we can easily define the bijection h(x) we are looking for:

f~Y=z) if zis of type 2
h(z) ={ g~ Yz) ifzisoftypel
f(z) ifzisoftype3d

To check now that h is a bijection is an easy matter.

Here it is quite clear that our sets A and B may have nothing to do with straight lines, that our
reference to the "ascending” and ”descending” chains in the proof of the theorem is totally arbitrary,
but they give us a very useful mental support for the key idea of ”inverse image of a mapping” that is
here the key for our proof.

And it is also quite clear that we could efface any visual connotation and write a completely formal
proof that could astonish our reader who would keep wondering where our magnificent ideas could come
from. Unfortunately this has been the prevalent fashion for quite a long time in papers, textbooks,
lectures... inspired in such a style of mathematical miscommunication.

In this example it becomes manifest the power of this type of homeomorphic visualization that in
many cases can become a quite personal and subjective process, perhaps often not easily communicable,
but in any case the effort to hand it over to our students is worth doing.

Analogical visualization

Here we mentally substitute the objects we are working with by other that relate between themselves
in an analogous way and whose behavior is better known or perhaps easier to handle, because it has
been already explored.

This kind of visualization or analogical modelization was one of the usual discovery methods used
by Archimedes, according to what he tells his friend Eratostenes in the famous letter which is known
by The Method. There are many spectacular discoveries by Archimedes, for example his calculation
of the volume of the sphere, which was first obtained by following this way of analogies and thought
experiments of mechanical nature. ’

The following example, which arose in a workshop on solving problems with university students,
can illustrate the way of proceeding.

The problem is the following: we are given four segments of lengths a, b, ¢, d, with which one can
form a convex quadrilateral in the plane of side lengths a, b, ¢, d, in this order. It is clear that if
we can form one, then we can form many different convex quadrilaterals. Among them find the one
enclosing the mazimal area.

The mechanical problem that can provide the adequate analogy leading to the solution is the
following. We are given four thin rods forming an articulate plane and convex quadrilateral. We
enclose it in a big soap film that contains the quadrilateral in its interior. We puncture the film at a
point inside the quadrilateral. The equilibrium position of the rods will be such that that the tension
of the soap film outside is minimal, i.e. the area of the quadrilateral is maximal.
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Therefore our problem is reduced to find the equilibrium position of the rods in this situation.
The forces acting on our system are reduced to four perpendicular forces to the sides applied at their
midpoints, directed towards the exterior of the quadrilateral and each of magnitude proportional to
the length of the corresponding side. It is easy to see that the equilibrium is obtained when the four
perpendiculars at the midpoints of the sides concur, i.e. when the quadrilateral can be inscribed in a
circle. This solves our original problem.

The use of the analogical method should not surprise any mathematician. It has been very often
put to work in mathematics, not only by Archimedes but also, for instance, by Johann Bernoulli in
his analogical solution to the brachistochrone problem proposed by him in the Acta Eruditorum "to
the most acute mathematicians of the whole world”. In this case an analogy with the behavior of the
light rays was the guide towards his solution.

Even the most ingrained formalist should consider that the fields on which such analogies are based
are capable of the most rigorous development, if this is what one should strive for.

Diagramatic visualization

In this kind of visualization our mental objects and their mutual relationships concerning the
aspects which are of interest for us are merely represented by diagrams that constitute a useful help in
our thinking processes. One could say that in many cases such diagrams are similar to mnemotechnic
rules.

The tree diagram we use in combinatorial theory or in probability and many others each mathemati-
cian develops for his or her own use, of a very personal nature, are of this type. Such symbolizations
and diagrams become in some cases of generalized use, but in many cases they are of a very personal,
individual use, and cannot be easily shared with others.

But in many cases they could be communicated with little effort to many others that would find
them extremely useful. However sometimes people think that such images, diagrams,... constitute a
real obstacle for the development of the individual in mathematics, since what matters, they say, is
only the formal justification of our arguments.

It is my opinion that the success that is experimented by the great teachers in mathematics is very
often due to the efforts they make to transmit to others and to share with them not only the results of
theirs and others researches, but also the processes by which somebody somewhere was able to obtain
such results.

When one examines the mathematical writings of Euler, the teacher of us ull, one perceives this
expositive quality of one of the great geniuses of mathematics.

It is clear that the classification of the possible types of visualization we have seen here is neither
exhaustive nor a clear cut one. There will be obviously many cases which cannot be enclosed in anyone
of the types we have described here.

3 Visualization over the centuries

What has been the role of visualization along time? We shall briefly examine some of the most
significative points.

The visualization at the origin of modern mathematics

The Greek word theorein means ”to contemplate” and theorema is what is contemplated and not,
as we now understand it, what is proved. In particular, among the early Pythagoreans who first
cultivated mathematics in our modern sense, the study of the numbers and the relationships among
them was performed by means of different configurations done by means of pebbles, small stones,
psefoi, in Latin calculi. As a token here we can see above two of their most simple theorems.
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For the Pythagoreans visualization was something connatural to the exercise of mathematics. In
Plato the specific role of the image in the mathematical construction is more explicit and strongly
emphasized. The image evokes the idea as the shadow evokes the reality. The drawn circle is not the
reality. The real thing is the idea of the circle, but its image plays a very important role as evocative
clement of the idea. The way of knowledge he calls dianoia is very specific of the mathematical
knowledge. The mathematician gets close to the intelligible through the reference to the sensitive.

The Elements of the mathematicians preceding Euclid probably contained, as Euclid’s Elements
do, many references that form an indispensable part of the text. But one can venture that it was
probably in Euclid’s lost Book of Fallacies where the references to geometrical paradoxes and fallacies
had a especially important role. One could guess that this book rather than the Book of Elements
could have been the one that was used by Euclid and his pupils in his learning practice.

As we have already seen, Archimedes used with advantage his analogical method as a very fun-
damental tool for his mathematical discoveries, although, one has to add, with a certain sense of
embarrassment.

The modern classics

Descartes, in his Regulae ad directionem ingenii, has several rules that directly involve visualiza-
tion processes. He strongly emphasizes the different roles of images and figures in the mathematical
thinking.

Here one can see three of the most significative rules in this context:

REGULA XIIL

Denique omnibus utendum est intellectus, imaginationis, sensus, et memoriae auziliis, tum ad
propositiones simplices distincte intuendas, tum ad quaesita cumn cognitis rite comparanda ut agnoscantur,
tum ad illa invenienda, quae ita inter se debeant conferri, ut nulla pars hurnanae industriae ornittatur.

(Finally it is necessary to make use of all the resources of the intellect, of the imagination, of the
senses and the memory: on the one hand in order to distinctly feel the simple propositions, on the
other hand in order to compare that which we are looking for with what is already known, in order to
recognize those; and also to discover those things that must be compared to each other in such a way
that no element of the human ability is omitted).

REGULA XIV.
Eadem est ad extensionem realem corporum transferenda, et tota per nudas figuras imagina-
tioni proponenda: ita enim longe distinctivs ab intellectu percipietur.
(This rule must be applied to the real extension of the bodies. It all must be proposed to our
imagination by means of pure figures. Since in this way it will much more distinctly perceived by the
intellect).

REGULA XV.

Juvat etiam plerurngue has figuras describere et sensibus ezhibere externis, ut hac ratione
facilius nostra cogitatio Tetineatur attenta.
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(It is also useful in many occasions to describe these figures and to show them to our external
senses, so that in this way our thought might maintain more easily its attention).

It seems also clear that the original idea driving Descartes to the development of the analytic
geometry arose as an attempt to combine the geometric image of the ancient Greeks with the already
at his time sufficiently well structured algebra.

The calculus of the seventeenth century is born with a very strong visual component and remains
so in the first centuries of its development, in continual interaction with geometrical and physical
problems. The following words of Sylvester may summarize and represent the feeling of some of the
great classics of mathematics about visualization: ”Lagrange... has ezpressed emphatically his belief
in the importance to the mathematician of the faculty of observation. Guauss has called mathematics a
science of the eye...” (The Collected Works of James Joseph Sylvester, Cambridge University Press,
1904-1912, quoted by Philip J.Davis (p.344) in Visual Theorems, Educational Studies 24 (1993) 333-
344).

Visualization, as we see, has been a technique generally used by the most creative mathematicians
of all times. One or other type of image accompanies their mathematical lucubrations, even the most
abstract, although the nature of these images presents a difference from person to person much greater
than we suspect.

Visualization, as we can see through these small samples extracted from the history of mathematics,
has played a very important role in the development of mathematics. And so it had to be, given
the peculiar structure of human knowledge, very strongly conditioned by visual, intuitive, symbolic,
representative elements, and given the nature of mathematics and its purposes of obtaining an image,
as accurate as possible, of the world around us.

The formalism of the 20th century and the visualization

In spite of the role played traditionally by visualization, the formalistic tendencies prevailing during
a good part of the 20th century, as we shall see in a moment, had as a consequence a sort of demotion
of visualization to an inferior position. Visualization was looked upon with mistrust and suspicion. It
would take too long to analyze the reasons that may cause this situation, but I try to schematically
pinpoint some of them. '

The rational status of the Calculus in the 17th century was beset by doubts and confusion and it
was not until the end of the 19th century, with the arithmetization of analysis, that became free of
any doubt.

The non Euclidean geometry’s in the middle of the 19th century lead many persons to be highly
diffident of intuition in mathematies.

The initial polemic against Cantor’s set theory at the end of the 19th century and the paradoxes
around the foundations of mathematics drove many mathernaticians to emphasize the formal aspect
in the structure of mathematics, trying to achieve in them a solid basis for the mathematical edifice.

The results falsely or incompletely proved (for instance, of the four-color theorem or the Jordan
closed curve theorem) based on a naive confidence in certain intuitive elements contributed to fos-
ter a more rigorous attitude towards the intuitive proofs, looking with distrust the merely intuitive
arguments.

All these facts lead to create a trend towards the strict formalization, not only in what is related
to the foundations of mathematics, what seemed to be amply justified, but also in what relates to
the normal interconununication among within the mathematical community and even, what is still
much worse, in what attains the mathematical teaching and learning processes at every level. The
consequences were very serious in what visualization concerns. The atmosphere of mistrust so created
lead some mathematicians to aggressively advocate a more or less complete abandon it. The influence
of formalism in the presentation of new results and theorems in the journals was the unavoidable norm.
Even the structure of text books at the university level, and sometimes even at secondary and primary
levels (”modern mathematics”) tended to conform to the same standards.

As a sample of such attitude one can read a couple of sentences in the introduction of a text book
by Jean Dieudonné on linear algebra and elementary geometry: "I have decided to introduce not a
single figure in the text... It is desirable to free the student as soon as possible of the straitjacket
of the traditional ”figures” mentioning them as scarcely as possible (excepting, of course, point, line,
plane)...”

The model for the mathematical activity for long time was the formalist model, and even the
teaching at the secondary level in many countries was contaminated by such tendencies.

One can find a clear testimony of such tendencies together with a brief attempt to explain it in
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the work A Mathematician’s Miscellany by J.E. Littlewood, where he openly acknowledges the many
benefits of visualization in his own research work.

"My pupils will not use pictures, even unofficially and when there is no question of expense. This
practice is increasing; I have lately discovered that it has existed for 30 years or more, and also why.
A heavy warning used to be given (footnote: To break with 'school mathematics’) that pictures are
not rigorous; this has never had its bluff called and has permanently frightened its victims into playing
for safety. Some pictures, of course, are not rigorous, but I should say most are (and I use them
whenever possible myself). An obvious legitimate case is to use a graph to define an awkward function
(e.g. behaving differently in successive stretches): I recently had to plough through a definition quite
comparable with the ”bad” one above, where a graph would have told the story in a matter of seconds.”

(In Littlewood’s miscellany, edited by Béla Bollobds (Cambridge University Press, Cambridge,
1986), p.54)

Towards a return of visualization?

What is the present situation? It seems that in the last decade or so one can perceive a much
more flexible attitude and a certain tendency toward a renewal of the influence of visualization in the
mathematical activity, teaching, learning, doing research and publishing it. With decision, especially
among many of those who do research in mathematics education. With many different attempts,
not always very successful, among those who have tried to explore the possibilities of the computer
for the mathematical tasks. And also with certain inertia, if not opposition, of a good part of the
mathematical community.

4 The role of visualization in Mathematical Analysis

The image, as we have seen, has very important uses in many different types of mathematical activity.
The image is frequently the matrix from which concepts and methods arise. It is a stimulating influence
for the rise of interesting problems in different ways. It often suggests relationships between the different
objects of the theory which are in a way somewhat difficult to detect by just logical means. It suggests
in subtle ways the path to follow in order to solve the most intricate problems of the theory and even
those connected with the development of the theory itself. The image is also a very powerful tool to
grasp in a unitary and holistic way the different contexts constantly arise in the different task connected
with the theory. It is also a rapid vehicle for the communication of ideas. It is also an auxiliary tool
for the unconscious activity around the most obscure problems connected with it.

Visualization is therefore extraordinarily useful in the context of the initial process of mathema-
tization as well as in that of the teaching and learning matheratics. All this makes very clear the
convenience of training our own visual ability and to introduce to it those whom we are trying to
introduce to mathematics. This applies not only to geometry, where all these considerations are quite
obvious, but also to, for instance, mathematical analysis. The ideas, concepts, methods of analysis
have a great richness in visual, intuitive, geometrical contents, that are constantly arising in the mental
workings of the analyst. It was not in vain that mathematical analysis arose as a need to quantitatively
mathematize in the first place the spatial relationships of the objects of our ordinary life. These visual
aspects are present in all kinds of activities of the mathematician, in the presentation and handling of
the most important theorems and results as well as in the task of problem solving. They seldom pass
over to the written presentation, perhaps partly because of the difficulty inherent to this task, and in
some other occasions because of the adherence to the most fashionable form of presentation ”the more
formal, the better”.

In fact the experts in a field of mathematical analysis have visual images, intuitive ways of ap-
proaching certain usual situations, imaginative ways of perceiving concepts and methods of great help
for them and that would be of great value also for others in their own work. The experts, through the
assistance of such visual tools, are able to relate, in a very versatile and flexible way, constellations,
frequently very involved, of facts and results of the theory and through such relationships they are able
to select in a co-natural way and without effort the most adequate strategies for solving the problems
of the theory.

These images are able in many cases to offer all the necessary elements to build, if one so wish, the
whole formal structure of the corresponding theoretical context or the problem. The expert knows,
even without having done it so, that just by investing the necessary amount of time and by accepting
to suffer the corresponding boredom inherent to the task, they, or any other, would be able to afford
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all the necessary ingredients to build up a proof capable to satisfy the most exacting appetite of rigor.

The following testimony of Hadamard on the role of visualization is quite representative of the
influence of the image in the mathematical processes of an analyst:

"1 have given a simplified proof of part (a) of Jordan’s theorem [that the continuous closed curve
without double points divides the plane into two different regions]. Of course, my proof is completely
arithmetizable (otherwise it would be considered non-existent); but, investigating it, I never ceased
thinking of the diagram (only thinking of a very twisted curve), and so do I still when remembering
it. I cannot even say that I explicitly verified or verify every link of the argument as to its being
arithmetizable (in other words, the arithmetized argument does not generally appear in my full con-
sciousness). However, that each link can be arithmetizable is unquestionable as well for me as for
any mathematician who will read the proof: I can give it instantly in its arithmetized form, which
proves that that arithmetized form is present in my fringe-consciousness.” (Jacques Hadamard, The
Psychology of invention in the mathematical field, p.103, footnote).

My opinion is that one of the important tasks of the expert in analysis in his intention of introducing
the young students to his or her field should be to try to transmit not only the formal and logical
structure of the theorems in this particular area, but also, and probably with much more interest, to
offer them these strategical and practical ways of the profession with which he or she has perhaps
learned and become familiar with much effort through the passage of the years. They are probably
much more difficult to make explicit and assimilable to the students, precisely because they are often
located in the zones less conscious of the activity of the expert. It is quite clear that this task is going
to present many aspects that are strongly subjective and that they are much more difficult to make
explicit and assimilable for our students, precisely because of the fact that they are situated in the
zones less conscious of the own activity of the expert.

By its own nature this task is going to involve many elements that are strongly subjective. The
ways to visualize and to make more close and intuitive the ideas of mathematical analysis to make
them work in certain concrete problems and situations are going to depend in an intense way of the
mental structure of each one. The degree of help the visual support affords varies, with certainty, in
a strong way, from individual to individual. What for one helps perhaps may be a hindrance to some
other person. But these differences should not represent an obstacle in our attempts to offer with
generosity to other those instruments that for us have resulted quite useful in our work to such a point
that this work without them would be much more difficulty, abstruse and boring.

5 Difficulties around visualization

Obstacles and objections

There are many obstacles and objections that hinder a more decisive progress in order to put
visualization in the right place it deserves in the job of communicating and transmitting mathematics
at the educational level and also to restore its status in the tasks concerning research. Here we present
some of them.

" Visualization leads to errors”

It is quite true that an incorrect use of visualization can lead us to errors in different ways. Some-
times because the figure we rely upon suggests a situation that in fact does not take place. This is the
case of many geometrical fallacies like the ones to be found in the classical book by W.W.Rouse Ball
Mathematical Recreations and Essays, Chapter III. An efficient way to get rid of such false arguments
that seem to originate in an incorrect interpretation of the figure is to consider a figure similar to one
proposed but in an extreme position of its elements. It often happens that our intuition leads us to a
false conclusion because the figure in question approximates the one that in fact takes place. When
we take a similar figure in a limit position, the truth shows up.

In some other cases the visual situation misleads us to accept certain relationships that appear
so highly obvious that never comes to our mind the need or the convenience to justify them more
rigorously. Euclid’s axioms, for instance, with all its astonishing maturity, are not exempt from some
very subtle gaps coming from this type of geometrical situations that had to be corrected by Hilbert
in his Grundlagen der Geometrie (1902).

The *proof” built up by Arthur Kempe in 1879 of the ”four-color theorem” was based in a geometric
relationship that, although false, seemed so clear that it was accepted by the mathematical community
of the moment until 11 years later when Heawood became aware of the fact that the proof was
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incomplete. By the way, it was Kempe's attempt the one that inspired the strategy, more than one
century later, that lead Appel and Haken to a successful proof of the fact that four color suffice to
appropriate color any particular map.

The "proofs” by Jordan (1893) and by other mathematicians of the visually obvious fact that
a plane simple closed curve divides the plane into exactly two regions, the interior and the exterior,
were not rigorous, since they contained assertions without rigorous justification based on intuitive
relationships. Later on such assertions were established with a considerable effort. The first correct
proof came 20 years after the statement of the theorem by Jordan in the work of O.Veblen (1913).

But the possibility that visualization can lead to error should not be a valid argument against its
efficiency in the different processes of the mathematical activity, as well in the creative tasks it entails
as in the processes of communication and transmission. Even the most formal techniques are open to
errors, incomplete reasoning, fallacies,... And one should take this fact as something quite natural.

Mathematical thinking is not normally presented through a completely formalized exposition that
could be automatically checked and controlled in each one of its steps. The communication style
of mathematicians is at the moment rather far from that stage and it is probable that it will keep
for some time. On the other hand it is debatable whether it would be convenient to adopt such a
style of communication, if it becomes possible. The mathematical language is today a sort of mixture
halfway between the natural language and the formalized language, a rather bizarre jargon consisting
of elements of the natural language, some esoteric words, and logical and mathematical symbols. And
in this curious mixture mathematicians are constantly alluding, in a more or less explicit way, to certain
tacit agreements of the mathematical community of the time, which are loaded with intuitive, visual
connotations, which each one presupposes to be known by the others.

In my opinion, it is not very surprising that such a language, especially in rather elaborate contexts,
may be open to ambiguities, mistakes and obscurities. To illustrate this fact let us consider a rather
recent example. The ”proof” of Fermat’s theorem solemnly presented in June 1993 by Andrew Wiles
was able to convince the experts in the field for several months before they detected a rather serious
gap. Some thought that to fill it could take another couple of centuries. The work of Andrew Wiles
and Richard Taylor for a year was again successful. In 1995 the proof met with the approval of the
experts and was published in the Annals of Mathematics.

» And now, please, give us a mathematical proof”

I imagine that a multitude the teachers share more or less the sanie experience. After having made
a strong effort to make quite obvious to our students of a mathematical situation by means of a visual
argument, we hear: ”Now, please, give us a truly mathematical proof”

What is a proof? For the Pythagoreans working at the seashore with their pebbles it would be:
” Just look!” For Littlewood: ”A proof is just a hint, a suggestion: look in this direction and convince
yourself”. For René Thom: ”A theorem is proved when the experts have nothing to object”.

Should we say that an assertion is only proved when it comes at the end of a more or less lenghty
chain of logical symbols? Maybe it is so in the paradise of the imagination of the formalists or logicians,
but certainly not in the real world of the mathematician. He or she is already satisfied with a more
reasonable degree of rigor. An isomorphic visualization, for instance, with well identified rules of
codification and decodification that make it clear how to go from the image to the formal argument,
is sufficient for the ordinary mathematician. It could be converted, with some effort in cases, in the
most rigorous proof in order to content the most entrenched of the formalists.

Some other types of visualization, homeomorphic, diagramatic, are able to smooth out the path of
other mathematicians, experts or students in order for them to explicitly construct a rigorous proof,
if it is necessary, much more easily than with the terse, pedantic and often unintelligible kind of proof
that the fashion has imposed for already too long time in our mathematical communication.

Of course the student that asks for a "real proof” after having been offered a faultless visual one has
possibly in mind the bias, often transmitted by his teacher, that only that assertion which results after
some logical quantifiers deserves the name of a proof. And this happens, it seems to me, because in
our mathematical education we seldom have had into account the importance of the habit of correctly
interpreting our visualizations, translating them, when it seems adequate, into a more formal language.

Visualization is difficult

Theodore Eisenberg and Tommy Dreyfuss have written an interesting paper with title On the
Reluctance to Visualize in Mathematics. In it they try to analyze the different obstacles that one
encounters in the visualization processes in mathematical education.

As I have said before, visualization is an intellection process which is direct and effortless, but only
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for the one who is sufficiently prepared to perform it in an efficient way. This preparation implies an
immersion and familiarization with the task of decodification of the image. When such a preparation
is absent, what for others might be an effortless and pleasant exercise can become a worrying and
absolutely incomprehensible hieroglyph. It is true that an image is worth a thousand words, but one
forgets to add the all-important condition that the image is understood. Otherwise it is worth nothing.

A road map, for instance, is not the reality of what is represented. It is just a set of symbols and
codes one has to learn to interpret. The correct performance of a visualization requires a previous
preparation, an education that not many mathematicians are able to transmit because they are not
conscious of what it presupposes of convention, of tradition, of familiarity with certain codes nowhere
explicitly written. And this is one of the aspects which our mathematical community, and especially
our educational community, should emphasize.

On the other hand there are also difficulties which come from the low status that visualization has
in our mathematical community. Our researchers make a continuous use of visualization, but their use
is timid, half-hearted, something they seem to be ashamed of. No prestigious journal would admit for
publication a paper in which the arguments and the proofs of the theorems would not be presented
in the more or less formalized language in vogue, even if any other mathematician could recognize
through them their validity. It is a question of observance to the prevailing norms. One often hears
with scorn many people speaking about proofs presented ”waving hands”, when it is a fact that an
adequate gesture can often open the minds of our audience.

Our students suffer of a certain distortion with respect to visualization and this is the origin of their
attitude with respect to it and also of the following phenomenon rather frequent in our mathematical
courses. We start by trying to explain for them the intuitive meaning of a theorem, what perhaps is
for us the most important portion of our intervention in the hour. In the most favorable cases they will
look at us with a certain attention, but without writing down a single word in their notebook. Just
when we start writing down on the blackboard what is going to be a formal proof, i.e. what probably
is already carefully written in their textbook, they start trying to get down in their notebooks ”black
over white” what seems to be for them the essential part of their work in class.

Visualization is also difficult for some other reasons of a practical nature and that become especially
apparent at the level of the written, non-direct communication. Visualization is a dynamical process.
The transmission means until now used in articles and in the textbooks that our students use is,
basically, the written word, a statically vehicle that is not well adapted to the needs of the visualization
processes. In the direct, oral presentation of a visualization its different elements start to appear little
by little, rounding off an image that starts being rather simple and possibly finishes by appearing
extremely complicated. In a book or article one presents usually the final image with all its elements
and this becomes quite difficult to interpret. In order to show in the textbook something which would
be near to the oral presentation of the same fact one would need perhaps six different figures. No
editor would allow such a waste, insisting that the space is expensive and so everything has to be ina
single figure.

Probably the communication means of the near future, especially for textbooks, will be something
similar to the CD-ROM that allows one to mix in an interactive form text, dynamical images, computer
programs that are

adequate for the field one is dealing with...

Some of the tasks ahead

I shall list some lines along which we could start working in order to put visualization in the place
that corresponds to it according to its usefulness and to mathematical tradition.

Prevent possible deviations. We should try to explicitly teach to perform correctly the processes
of visualization. We should pay special attention to the different types of visualization and to their
especifi usefulness in the mathematical teaching and learning. We should try to be aware of the
process of codification and decodification implied in the practice of visualization and trying to make
them explicit for our students.

We should try to stress in our teaching the habits of visualization, trying to make very explicit their
value in the practice of mathematics.

We should hold visualization in high esteem. We should insist in visualizing and, from time to time,
we should transcribe our visualization into formal expressions in order to put it out of doubt that what
we are doing is "real mathematics” and that what we explain by visualizing it can be also written in
formal language.

We should appreciate the value of visualization not only in our frequent use of it but also in our
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evaluation of the uses our students and others make of it and of the different skills which visualization
involves.

6 Visualization with and without the computer

The few examples we have proposed in the preceding pages have not needed at all the help of any
sophisticated tool. A great part of the visualization that we advocate can be performed as it always
has been done, by means of our imagination and representative ability, with the help of the normal
tools at hand, paper and pencil, chalk and blackboard.... In general it is not even necessary to resort
to straightedge and compass, since the main objective of our drawings is to help our intuition which is
able to think correctly with the help of incorrect figures. The accuracy and precision of our drawings
should be proportionate to what we expect from the type of representations we are using. It is of very
little use to draw with straightedge and compass when a hand made figure is more that sufficient to
suggest the relationships that are important for us. In most occasions the drawings are mere auxiliary
tools of our imagination helping it to get a better grasp of the relations that help us towards the
comprehension of subjects we are dealing with,

But it is quite clear that at this moment many technologlcal tools are at hand that can help us in
some circumstances when a simple hand made drawing is not satisfactory. The practice of visualization
can be now importantly enhanced with the help of these tools in many different ways.

In what attains mathematical analysis one can say that the existence of symbolic calculus programs,
such as MAPLE, MATHEMATICA, DERIVE, and many others, with their versatile representative
abilities, with their capacity for interaction in every field of mathematics is already producing deep
transformations in the new ways of doing research, teaching and learning mathematics. And this
tendency seems to show no limitations.

Let us just consider a simple example. Some years ago, in order to represent a curve in the
plane given by a not too simple equation f(x,y)=0, one used to advise the student to plot first a few
elements of easy computation in order to get an initial feeling about the curve (intersections with the
axes, possible horizontal and vertical asymptotes .... ). Today almost any symbolic calculus program,
even those incorporated into many pocket calculators, allow our students, given a rather sophisticated
function, to obtain a graph of it and so to have an immediate grasp of many of its most important
features. This already helps them to look in the right direction towards the solution of many problems
that curve might offer. The student who is able to establish an intelligent dialogue with the machine
through its representation capacities is in much better position to understand all the problems that
might be proposed.

The new tools that are now in the hands of most of our students have opened quite new worlds
to exploration that a few years before were closed to our view. To obtain 200 iterations of a simple
function like 4x(1 -x) with 12 exact decimal digits starting with x=0.7, for example, was a gigantic
task some years ago. Not so anymore. Now it may be made in a fraction of a second. Such capacities
have opened new worlds for exploration on different topics such as dynamical systems, mathematical
chaos, fractal geometry, and many others. On the other hand we have today many programs which are
specifically destined to promote the visualization in different fields of mathematics, multidimensional
analysis, geometry of different types.... All this is going to contribute to stimulate the current trend
towards revitalization of the visual aspects of mathematics in many different areas.

In what follows I shall present a few examples that help to perceive how visualization may be of
great help in the teaching and learning of some of the most basic aspects of mathematical analysis and
later on I add also some other which are already a little more sophisticated. The images I introduce
here are mostly handmade, in order to emphasize that the visual help one can obtain from such
representations does not depend on the accuracy and precision of the pictures.

7 Samples of visualization in basic Real Analysis

One could easily present a whole course of introductory real analysis with the concrete goal of giving
a visual slant to the most basic notions and results of the field. In my opinion it would contribute to
balance the still prevailing bias toward explicit logical rigor and formalization.. I myself have written
a small work with this orientation entitled El rincon de la pizarra (Pirdmide, Madrid, 1996). But I
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think that in a normal situation it is healthier to make use in our teaching and learning of all possible
recourses.

On the one hand the best advice to correctly choose our ways to confront a specific problem should
come from the inspection of the features of the problem, and on the other hand a permanent bias
in favor of the visualization processes could become also harmful for our students. Also one should
take into account that each one of our students has its own peculiarities concerning the ways (logical,
formal, intuitive,...) to attack a problem. In any case it seems very convenient to show the different
possibilities that are available when one tries to introduce them to a particular field.

In what follows we shall explore the possibilities of a visual approach in order to get an adequate
comprehension of the main concepts and results of introductory real analysis. We do it by offering
some pictures accompanied by a few sentences in order to convey the meaning of them. The drawings
are going to be handmade and rather rough, but, 1 hope, intelligible. I proceed so in order to make
clear that the precision and accuracy of our pictures is not very important in order to achieve the goal
we aim for.

Continuity of a function at a point

A function f: R —R can be isomorphically visualized by its graph.

In order to deal with the notion of continuity of f we are going to introduce rectangular windows
of height 2¢ and width 26 (of sides parallel to the axes Oz, Oy) centered at the points of (the graph
of) f.

A function f is continuous at the point @ € R when the following happens: no matter how small
we fix the height of a window centered at the point (a, f(a)) we can choose its width conveniently so
that we can see the graph of f going from the left side of the window to its right side without going
across its lintel (upper side) nor its threshold (lower side).

The function f of the picture in the next page is clearly not continuous at the point a.
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It is clear that if we consider a different point, it may be possible that for the same height of the
window we have to choose a different width in order to see the graph inside the window. An example
follows
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If we consider the function y = z2, it is clear that we if take a point far to the right the slant gets
more pronounced and the width which was adequate for points close to 0 is not any more valid.

Uniform continuity

The motivation for this notion comes from the final remark of the preceding paragraph.

The function f will be said uniformly continuous on R when given a window height we can choose
a window width such that this window centered at any point of the curve allows us to see the curve
inside it.

An example follows

The function f(z) = /z for z >0 is uniformly continuous. The window which is adequate when
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centered at (0,0) is also good at any other point (one sees that the slope of the function decreases and
this is what makes the window appropriate in this case).

After considering this example one can easily conclude: if the absolute value of the slope of the
curve is always below a fized finite value k, then the function is uniformly continuous, since for each
height 2¢ we can choose a width 2§ = 2¢/k so that when this window is centered at any point of the
graph we can see the curve inside. More precisely: if f : R —R has a derivative at each point and
[f'(z)| € k at any z, then f is uniformly continuous on R .

Limit of a function at a point

Now we consider windows as above, but we are going to disregard what happens along the vertical
segment splitting it in two equal portions. To be more clear, we shall be interested in what happens
in the shaded portion of the window in the figure in the next page (we shall call it a split window)
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And now we can say that a function f has limit L at the point a , when for each window height

there we can choose a width such that the corresponding split window centered at (a, L) lets us see
the graph of the curve. The following figure will make it more clear.
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Through it we try to suggest that what happens at the line 2 = a does not matter.

It is not my intention here to do so, but it would not be a difficult exercise to use the notions
we have introduced in order to visually deduce the main properties of the real functions related to
continuity and limits.

Contractive functions

The notion of contractive function on the real line is easily visualizable in a very interesting way.
We are going to introduce now “angular windows”.

An angular window of angle o € [0,7/2) centered at the point (a,b) is the portion of the plane

enclosed by the two straight lines passing through (a, b) and forming angles with Oz of magnitudes a
and —a containing the horizontal line through the point (a,b).

In the figure below the angular window is the shaded zone, corresponding to an angle o < 45
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A function f : R — R is a Lipschitz function of constant k£ > 0 when the angular window of angle
a = arctan(k) centered at any point of f contains the graph of f.

The translation of this definition into analytical terms is, of course:

A function f : R — R is a Lipschitz function of constant k > 0 when for each a,b € R,
|f(6) = f(a)l < klb—al.

When the constant k is less than 1, i.e. when the angle is less than 45°, then the function is called
a contractive function.

From the visual definition it easily follows that any Lipschitz function is uniformly continuous (for
any window height 2¢ one chooses the width 26 = 2¢/k corresponding to the window with that height
and whose diagonals have slope k and —k.)

The iterations of a function

As we shall see, it is often useful, given a function f(z), f: R — R, to consider the iterated values
starting from z = a , i.e. the values, f(a), f2(a) = f(f(a)), f3(a) = f(f(f(a))), ..., f*(a), ... The visual
determination of these values starting from the graph of the function is interesting:

from the point (a,0) one draws a vertical segment to the curve and one obtains (a, f(a))

from (a, f(a)) one draws a horizontal segnient that intersects the bisector y = z at the point

(f(a), f(a)

from this point one draws a vertical segment to the curve and one obtains (f(a), f%(a))
In this way we obtain the different values f(a), f2(a), f3(a),...f*(a), ...
The following figure makes the process clear
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It also suggests that when the function is contractive, the sequence of points on the bisector line
are going to converge to a point which belongs both to this line and to the curve, i.e. it is a point
(p, f(p) = (p,p). This means that f(p) = p. We shall visually prove this property in detail.

Fized points

Given a function f : R — R we say that p € R is a fixed point for f when f(p) = p. The visual
translation is: a fized point p for the function f is any of the abscissae of the intersections , if they
exist, of the graph of f with the liney=1x .

Fixed points are extremely important in modern analysis and for this reason the following theorem
is at the center of the theory.

A visual proof of the fized point theorem for contractive functions

After the exploration we made above, when dealing with the iterations of a function, the following
theorem should not be a surprise.

If f: R — R is a contractive function then there is a unique fized point p for f that can be obtained
by choosing any a € R and determining p = limn_.o0 f™(a).

The existence of at least one fixed point is visually proved in the following way.

If we take any point (a, f(a)) of the graph of f and we center on it the corresponding angular
window, as in the figure, it becomes clear that the sides of this window (since @ < 45°) intersect the
line y = z at two points P, M (unless a = f(a), but then we already have our fixed point a).

Since the graph of f is enclosed in the window we have drawn, it is obvious that it has a point on
the segment PQ , below the line y = x and another one on the segment M N , above the line y = z.
Therefore the continuous curve f has at least one point of intersection with y = z, i.e f has at least
one fixed point p.

e/
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The fact that this point is unique follows visually by just centering the angular window at the point
(p, f(p)) as indicated in the figure below

Since a < 45° and the graph of f is in this angular window, it cannot intersect again the line y = .
This means that f has a unique fixed point p.
From the analytic characterization of the contractive function we have

/(@) - pl = 1f"(a) - fA®) < k|f*Ha) = F* 1 (P)| < k" [p—al

and, since k < 1, we obtain p = lim,,_,o, f™(a) and so the theorem is proved.

Sequences of functions and uniform convergence. Dini’s theorem.

Let f, and sequence of functions from K C R to K. That f, converge uniformly on K to another
function g means visually that for any plane strip of width € > 0 around g we can choose a subindex m
such that for each n > m the function f,, is inside that strip as the figure below suggests. One can check
that this is the exact translation of ”for each n > m and for each z € K one has |f,(z) — g(z)| < e.
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Dini’s theorem asserts that if K is a compact set and if the sequence fyn of continuous functions
converge montonically at each point = € K to g(x), g being also a continuous function on K, then the
convergence of fn to g is uniform on K.

The visual proof of this theorem is interesting.First one can assume that f,(x) decreases at each

point and and one can reduce the theorem to the case where g is 0 on K by considering the functions
fa—g.

We fix a strip of width £ > 0 around the axis Oz. For each z in K there is an n, such that for each
p > ng one has 0 < fo(z) < fn,(z) < &. Therefore for each z € K there is an open interval (z — &g,
z + £2) such that for each point p > n, and each ¢ in the interval one has 0 < fp(t) £ fa.(t) < 2e.

Since K is compact we can choose a finite number of such intervals covering K. If NV is the greatest
ng corresponding to these finite collection of intervals we see that for each n > N, fy, is in the 2¢ -strip
of the function g. This concludes the proof of Dini’s theorem.

As an exercise I would like to suggest a visual proof of the following theorem related to the one
by Dini: if K is a compact set and if the sequence fn of monotone continuous functions converge at
each point = € K to g(z), g being also a continuous function on K, then the convergence of fn to g
1s uniform on K.

I think the proof that results becomes significatively more transparent than the one usually offered.
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A theorem made simple by means of a visualization

An additive function f: R — R is a function such that f(a +b) = f(a) + f(b) for each a,be R .

It is then easy to see that f(0) = 0, that for each m € Z we have f(mz) = mf(z) and that for each
r,s € Q we have f(ra + sb) = rf(a) + sf(b).

The following interesting fact has an immediate visual proof: the graph of any additive function f
is either a line through the origin or else is a set of points dense in the plane.

Assume that the graph has two points A(a, f(a)) and B(b, f(b)) such that the straight line AB
does not go through the origin.
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The set of points {rA + sB : r,s € Q} is obviously dense in the plane.

From this fact one can easily conclude that any function g which is additive and continuous, then
it is of the form g(z) = Az for A = g(1). It is not difficult to see that any additive and measurable
function has also to be of this same form. If we determine a function which is additive and not of this
form we deduce the existence of non-measurable functions.

Such an additive function not of the form g(z) = Az is determined in the following way. Let us
consider the vector space R over the field of rational numbers Q. We determine a basis of this vector
space by taking first the elements 1 and /2 , which are clearly linearly independent over the rationals,
and completing this set to a basis in an arbitrary way. Let this basis be {1, V2, es, ey, } . Let us now
define g(1) = 1, g(v2) = 2, and for any element & € R, & = 711 + r2v/2 + r3e + r4eq + ... We set

g(a) = g(rl+ 7‘2\/5'*'7‘36 +raeq +..) = r1g(1) + 7'29(\/5) +ragles) + ...

In this way g is additive and obviously the line passing through (1, ¢(1)) and (v/2, g(v/2)) does not
go through the origin. The function we have so defined cannot be measurable.
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CONCEPTUALIZING THE REALISTIC MATHEMATICS EDUCATION
APPROACH IN THE TEACHING AND LEARNING OF ORDINARY
DIFFERENTIAL EQUATIONS

Oh Nam KWON
Ewha Womans University, Department of Mathematics Education, Seoul, Korea
E-mail: onkwon@ewha.ac.kr

The undergraduate curriculum in differential equations has undergone important
changes in favor of the visual and numerical aspects of the course primarily
because of recent technological advances. Yet, research findings that have analyzed
students’ thinking and understanding in a reformed setting are still lacking. This
paper discusses an ongoing developmental research effort to adapt the instructional
design perspective of Realistic Mathematics Education (RME) to the teaching and
learning of differential equations at Ewha Womans University. The RME theory
based on the design heuristic using context problems and modeling was developed
for primary school mathematics. However, the analysis of this study indicates that a
RME design for a differential equations course can be successfully adapted to the
university level.

Key Words: Differential equations; Realistic Mathematics Education (RME),
College mathematics; Reform in mathematics education; Teaching practice
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During the past decades, there has been a fundamental change in the objectives and nature of
mathematics education, as well as a shift in research paradigms. The changes in mathematics
education emphasize learning mathematics from realistic situations, students’ invention or
construction solution procedures, and interaction with other students or the teacher. This shifted
perspective has many similarities with the theoretical perspective of Realistic Mathematics
Education (RME) developed by Freudenthal (1973, 1991). The RME theory focuses on guided
reinvention through mathematizing and takes into account students’ informal solution strategies
and interpretations through experientially real context problems. The heart of this reinvention
process involves mathematizing activities in problem situations that are experientially real to
students. It is important to note that reinvention is a collective, as well as individual activity, in
which whole-class discussions centering on conjecture, explanation, and justification play a crucial
role. In the reinvention approach, researchers build upon the work that has been done on
symbolizing and modeling in primary-school mathematics (Treffers, 1991; Gravemeijer, 1994,
1999. Can the framework that was developed for primary school mathematics be adapted to teach
differential equations in collegiate mathematics?

For three decades, international comparisons of mathematics achievement have favored primary
and secondary students in Korea (Husen, 1967; McKnight, Travers, Crosswhite, & Swafford,
1985a and 1985b; Horvarth, 1987; U.S. Department of Education, 1997a, 1997b). For instance,
Korean eighth grade students ranked second among 41 different nations on the Third International
Mathematics and Science Study (TIMSS) (U.S. Department of Education, 1996). Superficially, it
appears as if Korean students possess advance mathematical knowledge and skills when compare
to other students of the same age in different countries. Lew (1999) and Kwon (2002) argued,
however, that most Korean students seem quite unable to relate their well-developed manipulative
skills to realistic context problems to the real-world situations, as secondary mathematics lessons
in Korea put much emphasis on computation and algorithm skills. Korean students, however, are
the only students who have difficulties adapting their mathematical knowledge to real-world
situations. Lack of students’ understandings of real-world situations and the characteristic of
mindless, symbolic manipulation in differential equations has also been noted by a number of
mathematicians (e.g., Boyce, 1994; Hubbard, 1994). The question then becomes how do
instructors teach students differential equations in such a meaningful way as to foster students’
mathematical growth. RME may give a perspective for conceptualizing this teaching of differential
equations since realistic context problems play an essential role from the start and also the point of
departure is that context problems can function as anchoring points for the reinvention of
mathematics by students themselves (Gravemeijer & Doorman, 1999). Such a reinvention process
in RME will be paved with realistic context problems that offer students opportunities for
progressive mathematizing in differential equations. From the RME perspective, students should
learn mathematizing subject matter from realistic situations in differential equations.

The overall purpose of this study is to examine the developmental research efforts to adapt the
instructional design perspective of RME to the teaching and learning of differential equations in
collegiate mathematics. A differential equations course, highlighting reinvention through
progressive mathematization, didactical phenomenology and emergent models design heuristics,
was developed. Informed by the instructional design theory of RME and capitalizing on the
potential of technology to incorporate qualitative and numerical approaches, this paper offers an
approach for conceptualizing the learning and teaching of differential equations that is different
from the traditional approach.
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Theoretical Orientation

Realistic Mathematics Education

RME is rooted in ‘mathematics as a human activity,” and the underlying principles are guided
reinvention, didactical phenomenology, and emergent models. These principles are based on
Freudenthal’s philosophy which emphasizes reinvention through progressive mathematization
(Fredenthal, 1973, 1991). In RME, context problems are the basis for progressive mathematization,
and through mathematizing, the students develop informal context-specific solution strategies
from experientially realistic situations {Gravemeijer & Doorman, 1999). Thus, it is necessary for
the researchers who adapt the instructional design perspective of RME to utilize contextual
problems that allow for a wide variety of solution procedures, preferably those which considered
together already indicate a possible learning route through a process of progressive
mathematization.

Three guiding heuristics for RME instructional design should be considered (Gravemeijer, Cobb,
Bowers, & Whitenack, 2000). The first of these heuristics is reinvention through progressive
mathematization. According to the reinvention principle, the students should be given the
opportunity to experience a process similar to the process by which the mathematics was invented.
The reinvention principle suggests that instructional activities should provide students with
experientially realistic situations, and by facilitating informal solution strategies, students should
have an opportunity to invent more formal mathematical practices (Freudenthal, 1973). Thus, the
developer can look at the history of mathematics as a source of inspiration and at informal solution
strategies of students who are solving experientially real problems for which they do not know the
standard solution procedures yet (Streefland, 1991; Gravemeijer, 1994) as starting points. Then the
developer formulates a tentative learning sequence by a process of progressive mathematization.

The second heuristic is didactical phenomenology. Freudenthal (1973) defines didactical
phenomenology as the study of the relation between the phenomena that the mathematical concept
represents and the concept itself. In this phenomenology, the focus is on how mathematical
interpretations make phenomena accessible for reasoning and calculation. The didactical
phenomenology can be viewed as a design heuristic because it suggests ways of identifying
possible instructional activities that might support individual activity and whole-class discussions
in which the students engage in progressive mathematization (Gravemeijer, 1994). Thus the goal
of the phenomenological investigation is to create settings in which students can collectively
renegotiate increasingly sophisticated solutions to experientially real problems by individual
activity and whole-class discussions (Gravemeijer, Cobb, Bowers & Whitenack, 2000). RME’s
third heuristic for instructional design focuses on the role which emergent models play in bridging
the gap between informal knowledge and formal mathematics. The term model is understood in a
dynamic, holistic sense. As a consequence, the symbolizations that are embedded in the process of
modeling and that constitute the model can change over time. Thus, students first develop a
model-of a situated activity, and this model later becomes a model-for more sophisticated
mathematical reasoning (Gravemeijer & Doorman, 1999).

RME’s heuristcs of reinvention, didactical phenomenology, and emergent models can serve to
guide the development of hypothetical learning trajectories that can be investigated and revised
while experimenting in the classroom. A fundamental issue that differentiates RME from an
exploratory approach is the manner in which it takes account both of the collective mathematical
development of the classroom community and of the mathematical learning of the individual
students who participate in it. Thus, RME is aligned with recent theoretical developments in
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mathematics education that emphasize the socially and culturally situated nature of mathematical
activity.

Traditional and Reform-Oriented Approaches in Differential Equations

Traditionally, students who take differential equations in collegiate mathematics are dependent
on memorized procedures to solve problems, follow a similar pattern of learning in precalculus
mathematics, and follow model procedures given in the textbook or by a teacher. Also, the search
for analytic formulas of solution functions in first order differential equations is the typical starting
point for developing the concepts and methods of differential equations. This traditional approach
emphasizes finding exact solutions to differential equations in closed form, i.e., the dependent
variable can be expressed explicitly or implicitly in terms of the independent variable. However, in
reality, when modeling a physical or realistic problem with a differential equation, solutions are
usually inexpressible in closed form. Therefore, as Hubbard (1994) pointed out, there is a
dismaying discrepancy between the view of differential equations as the link between mathematics
and science and the standard course on differential equations.

The teaching of differential equations has undergone a vast change over the last ten years
because of the tremendous advances in computer technology and the “Reform Calculus”
movement. One of the first textbook promoting this reform effort was published by Artigue and
Gautheron (1983). More recently, a number of textbooks reflecting on this movement have been
written (e.g., Blanchard, Devaney, & Hall, 1998; Borelli & Coleman, 1998; Kostelich &
Armbruster, 1997; Hubbard & West, 1997). Primary features of these reform-oriented textbooks
are content-driven changes made feasible with advances in computer technology. Thus, these
textbooks have decreased emphasis on specialized techniques for finding exact solutions to
differential equations and have increased the use of computer technology to incorporate graphical
and numerical methods for approximating solutions to differential equations (West, 1994).

According to Boyce (1995), the primary benefit of incorporating computer technology in
differential equations is the visualization of complex relationships that students frequently find too
complicated to understand. For example, a typical differential equation, u’“+0.2u’+u=coswt,
u(0)=1, u’(0)=0, can be easily executed with technology, and students can understand the behavior
of the system by using technology to draw a three-dimensional plot as a function of both w and /.
The main reasons to use computers in a differential equations course are that geometric
interpretations of solutions through the use of computer software help students to understand basic
concepts such as initial value problems, integral curves, direction fields and flows for dynamical
systems (Lu, 1995). In addition, many concepts including phase portrait, stability, stable and
unstable manifold, bifurcation and chaos can better be understood by introducing a computer
program for teaching and learning. However, the current reform movement in differential
equations emphasizes a combination of analytic, graphical, and numerical approaches from the
start. Although different from traditional approaches to differential equations, this movement is
quite similar to traditional approaches in the way in which conventional graphical and numerical
methods are used as the starting point for students’ learning, as Rasmussen (1997, 1999)
documented. Thus, as is the case with the traditional approach, students typically do not participate
in the reinvention or creation of these mathematical ideas associated with graphical and numerical
methods, the representation that conventionally accompany these ideas, and the methods
themselves. The learning that occurred was characteristic of mindless graphical and numerical
manipulation in the reform-oriented approach. In these respects, the learning demonstrates little
improvement over traditional approaches where mindless symbolic manipulation was the prevalent
mode of operation.
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The current curriculum-oriented reform movement in differential equations has some content-
based advantages. The approach being developed here seeks to build on and complement these
positive aspects by adapting principled perspectives and approaches that have informed the re-
thinking of mathematics learning and teaching at the elementary and secondary level to the re-
thinking of mathematics learning and teaching of differential equations.

Guided by the RME instructional design theory, students may participate in the reinvention of
mathematical idea and methods that comprise a differential equations course. The emphasis on
reinvention by no means implies that the instructor is a bystander in the learning process. In fact,
the instructor’s role might even be more important in this approach than in the traditional
dissemination approach to learning. For example, the instructor guides the construction of
classroom social and sociomathematical norms (Yackel, Rasmussen, & King, 2000) that foster
students’ reinvention and sophisticated mathematical reasoning in differential equations. Initial
work (Trigueros, 2000; Yackel et al., 2000; Zandiech & McDonald, 1999) suggests that this
perspective demonstrates some promise to foster students’ mathematics growth in differential
equations.

Project Classroom & Preliminary Analysis

A classroom teaching experiment in an introductory course in differential equations was
conducted during Fall 2001 at Ewha Womans University with a group of 43 students, most of
whom were first-year undergraduate students majoring in mathematics education. Ewha Womans
University has over 20,000 students and is one of the most prestigious schools in Korea. Ewha is
also well-known for pre-service teachers education. Over 30% of newly employed in-service
secondary mathematics teachers have graduated from Ewha Womans University.

Data based on a methodology for determining the emergence of classroom mathematical
practices were collected (Cobb, Stephen, McClain, Gravemeijer, 2001). Data from the teaching
experiment consisted of videotapes of each class session, including the small group work; field
notes made by the observers and the instructor; records of instructional activities and decisions,
and copies of students’ work such as in-class work, homework assignments, weekly electronic
journal entries and reflective portfolios. In addition, experimental curriculum materials as well as
programs for the TI1-92 calculator were developed. The materials were guided and informed by the
RME instructional heuristic and were designed to help students to complete reinvention activities,
which occur when students try to devise their own ways of working through a mathematical
concept. )

In the typical collaborative learning environment of this project, the instructor poses a task,
students work in groups of two to four students, and after most groups obtain initial ideas about the
task, the class engages in a discussion of students’ approaches to the task. Whole-class discussions
might continue for 10-15 minutes before another 5-10 minute segment of small group work took
place. This cycle was typically repeated three to four times in a 75-minute class period. The nature
of small group work was not for students to solve a specific problem but to analyze a question and
develop reasons to support their thinking. Because of the continuous emphasis on reasoning,
whole-class discussions resulted in the emergence of key concepts such as slope fields, phase lines,
and bifurcation diagrams.

In this paper, one of the themes emerging during this teaching experiment is exemplified with a sample
from the data and preliminary analysis. Holistic data analysis and its implications to undergraduate
mathematics education from the RME perspectives will be discussed during the presentation.



Research on the design of primary school RME sequences has shown that the concept of
emergent models can function as a powerful design heuristic (Gravemeijer, 1999). The following
example illustrates the RME heuristic that refers to the role models can play in a shift from a
model-of a situated activity to a model-for mathematical reasoning in the learning and teaching of
differential equations.

Suppose a population of Nomads is modeled by the differential equation dN/dt =f(N).
The graph of dN/dt is shown below.

— For the following values of the initial population,

l» ~//- \—\ =t What is the long-term value of the population?
AN N e to briefly explai i

E e \ e sure to briefly explain your reasoning.

i '\ (DN(0)=2, (2IN(0)=3, 3)N(0)=4, (4)N(0)=7
<1 .

i ¢

Figure 1. Graph of dN/dt.

The development from a model-of to a model-for can be illuminated by the four different levels
of activity: situational, referential, general, and formal (Gravemeijer & Doorman, 1997,
Gravemeijer, 1997). Each of these four different levels emerged during this teaching experiment.

At the situational level, students’ interpretations and solutions depend on understanding how to
act in the setting. For example, one participant named Jungsun was trying to figure out how to use
the given differential equation to approximate the long-term value of the population for each initial
population. This situation means that once she interpreted the differential equation as an
experientially realistic context, she understood how to act in the setting. For this level, the TI-92
graphing and symbolic calculator can play an essential role by allowing the slope field to emerge
as an initial record of students’ reasoning and mathematical activities for their numerical
approximations. Then it becomes a tool for fostering students’ reasoning about solution functions
to differential equations (Figure 2).

At the referential level, models-of is grounded in students’ understanding of pragmatic,
experientially real settings. Students’ activities might be considered referential (that is, referring
back to the discrete approximations) when they are initially acting with the slope field as if there is
an indication of the differential equation at any conceivable point (Figure 3).
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Figure 2. Slope field for dN/dt.
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Figure 3. Jungsun’s solution graph.

At the general level, models-for makes possible a focus on interpretations and solutions
independent of situation-specific imagery. Students’ interpretations and responses to solution
functions are no longer referring back to discrete approximations or specific solutions. Their
activities involve holistically interpreting rates of change and solution functions (Figure 4). That is,
students’ solutions involve simultaneous reasoning about individual solution functions, as well as

collections of solution functions.

At the formal level, students’ activities are often characterized by the formal use of conventional
notation. This fact is a useful and important way to differentiate activity at the general level from
activity at the formal level. For example, one student, Miju, uses a dynamic image of the phase
line which differentiates activity at the general level from activity at the formal level, thus
demonstrating that her reasoning regarding solution functions is at a higher level (Figure 5).
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Figure 4. Rami's solution graphs.
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Figure 5. Miju's phase line.

Guided and informed by the RME instructional heuristic, students in the differential equations
course first act in mathematical situations in progressively more formal ways where the model
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comes to the fore as a model-of a mathematical context. Then subsequently, the model changes so
that it can begin to function as a model-for increasingly sophisticated ways of mathematical
reasoning. '

Concluding Remarks

The study of ordinary differential equations is essential for students in many areas of science
and technology. Many useful and interesting phenomena in engineering and life sciences that
continuously evolve in time can be modeled by ordinary differential equations. Therefore, it is
very important for students to have a firm understanding of ordinary differential equations, their
solutions, and the different kinds of qualitative behavior the systems of ordinary differential
equations can exhibit. Several recent curriculum reform efforts in differential equations are
decreasing the traditional emphasis on specialized techniques for finding exact solutions to
differential equations and increasing the use of computing technology to incorporate qualitative
and numerical methods of analysis. Yet, research findings (e.g., Habre, 2000; Rasmussen, 1997) on
students’ thinking and understanding of differential equations are still minimal.

Through conceptualizing RME perspectives to the learning and teaching of differential
equations, this research illustrates that when students are engaged in instruction that supports
reinventing conventional representations out of mathematizing experiences, slope fields and
graphs of solution functions can and do emerge for their mathematical activities. Specifically,
students in Korea might more readily adapt their well-developed manipulative skills to
experientially real situations with the incorporation of the RME instructional design. Further this
research demonstrates how emerging analyses of student thinking and symbol-use can be
profitably coordinated to promote students’ sophisticated ways of reasoning with mathematical
concepts in differential equations. Thus this paper suggests that an RME design for a differential
equations course offers an alternative perspective for conceptualizing the learning and teaching of
differential equations, even in undergraduate mathematics. This research also implies that
researchers should consider, investigate, and adapt principled approaches that have been useful for
reform in K-12 mathematics when conceptualizing the reform of undergraduate mathematics.

Research in the teaching and learning of mathematics at the university level is a relatively recent
and new phenomenon (Artigue, 1999); research in the teaching and learning of differential
equations is even newer. The problems in undergraduate mathematics education are not easily
solved by just writing or adopting new textbooks. The problems are related to the forms of
students’ work, the modes of interaction between university teachers and students, and the
methods and content which students are assessed. The perspectives reported in this study can
complement the growing research base in the teaching and learning of differential equations in
both practical and theoretical aspects.

Acknowledgements: The author would like to thank Chris Rasmussen for sharing his ideas
about structuring and teaching this differential equations course while this research was being
conducted.
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ACCESSING KNOWLEDGE FOR PROBLEM SOLVING
Joanna MAMONA-DOWNS
University of Macedonia
Greece

ABSTRACT

This paper studies the modes of thought that occur during the act of solving problems in mathematics. It
examines the two main instantiations of mathematical knowledge, the conceptual and the structural, and their
role in the afore said act. It claims that awareness of mathematical structure is the lever that educes
mathematical knowledge existing in the mind in response to a problem-solving activity, even when the
knowledge evoked is far from being evidently connected with the activity. For didactical purposes it
proposes the consideration of mathematical techniques to facilitate the accessing of pertinent knowledge. All
the assertions above are substantiated by close examination of some exemplars taken from various
mathematical topics, and the presentation of some recent fieldwork results.
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Introduction

Let us set the scene by immediately referring to a particular problem.

Example 1

Show that k! divides the product of any k consecutive positive integers.

The most efficient way to argue for this problem is the following. Consider for any positive
integer n

n(n+1)(n+2)...(n+k)
k!
If we show that this fraction represents an integer we are done. However we notice that the

above expression is in the form of a binomial coefficient, and so is guaranteed to be an integer.

In the approach above we have introduced and applied some knowledge that was not evidently
relevant to the initial context of the question. The role of accessing appropriate knowledge here is
decisive, as it is of course important generally in problem solving in Mathematics. It is essential for
a solver to be able to transfer ideas from one context to another. To promote such an ability, there
would seem to be two fronts that have to be nurtured. The first is to mentally organize mathematical
knowledge as it is learned and develop it in a way that is conducive for application in problem
solving. Indeed our example could even be regarded as a fact that could have been assimilated
previously when learning about binomial coefficients. Such broader knowledge accumulated about
a certain notion will be called a 'schema’. The second front is how the practitioner becomes skilled
in making the connections she/he needs whilst working on non-routine mathematics. Are we
simply reduced to say one just happens to notice something as in the example above, or can we
analyze the process further? We shall consider awareness of mathematical structure as a possible
way to achieve this.

The importance of accessing knowledge for solving activities and the creative challenge it
demands means that it is natural to try to systematize the ways to cope with this mental action as far
as possible. One way to effect this systemization is through techniques. (We shall specify exactly
what we mean by a technique later in the paper.) In creating techniques we are often cementing
interactions of different entities or systems, hence strengthening schemas. We feel, then, that
students' acquisition of techniques is crucial for them to become efficient problem solvers. Some
techniques are taught explicitly in the curriculum, but many others have to be garnered by the
students themselves. Quite a few require only a slight shift in perspective in looking at acquired
knowledge, but cognitively speaking we should not assume that such shifts would be easy for the
student to accomplish on her/his own. Potentially anyway, yet further techniques would be gleaned
from the students' experiences whilst occupied with their exercises, in drawing together similarities
with previous work. However the required assimilation in order to process such perceived
parallelisms into clear descriptions, as techniques would no doubt require certain maturity. There is
a common saying in the professional community of mathematicians that "a trick met twice becomes
a method". This disregards, though, the problems involved in identifying and extracting your
method from the (possibly very different) contexts encountered.

This paper will address in more detail the issues raised above, and will discuss some
pedagogical implications. In particular we will consider techniques that really only comprise simple
reformulation of known material, as this class may be the most realistic to take in order to



positively influence students' thinking patterns. In this context, I shall describe briefly some
fieldwork that I conducted involving one such technique, employing bijections for the purposes of
enumeration.

Knowledge Acquisition and Retention

It is plain that if we wish to access knowledge, we are first assuming that that knowledge is
present. Hence knowledge acquisition and retention are relevant topics for our theme.

Here we shall be thinking only about mathematics content knowledge. (This excludes then
knowledge of heuristics such as identified by Polya (1945) and metacognition as espoused by
Schoenfeld in Schoenfeld (1992) for example.) There has been a tradition in mathematics
education literature to compare 'conceptual knowledge' with 'procedural knowledge’, see e. g.
Hiebert & Lefevre (1986), however we shall add another category that we shall call 'structural
knowledge'.

The conceptual, for us, concerns some sort of issue, circumstance or entity that can be modeled
mathematically but may be also manipulated mentally to some degree independently of the
mathematical model. Conceptual mathematics always in this way refers to a cognitive environment
where the mind can process ideas that should be readily transferable to the mathematics. The part
of the environment that supports these ideas is often referred as the concept image in the
educational literature, see for example Tall & Vinner (1981). The concept image may take many
forms, such as descriptive wording or use of diagrams. The concept image should be thought of as
being much more than an informal representation; cognitively the concept image is more or less
identified with the 'working' of the mathematics that it parallels. This strong identification between
a mathematical system and a more intuitive realm means that a concept has the potential to
convince the practitioner of the truth of some related proposals without having to make recourse to
formal proof. Any known result that is at least partially understood via the concept will be termed
‘conceptual knowledge'. It should be remembered that often the act, or we might say the art, of
forming definitions must necessarily compromise the original concept image. [This is amply shown
with Lakatos' work, as in Proofs and Refutations (1976)]. If the image is not adapted accordingly,
there will be clashes between the image and the mathematical system leading to possible
dysfunction in performance. In tertiary level mathematics, at least, images are not often induced
within taught curricula, so this problem is usually never quite resolved completely. Even when they
are 'officially’ introduced, images may not capture every feature or special case involved in the
mathematical system. [E.g. in Pinto & Tall (2001) it is remarked how a student could not reconcile
the convergence of a constant sequence in the standard 'dynamic' graphical depiction for limiting
properties of sequences often shown in text books.] The above suggests that conceptual knowledge
may not be so easily assimilated or retained as one might have believed; and it is likely to be
mentally processed inflexibly.

When mathematics education was still quite young as an autonomous discipline, Skemp (1978)
emphasized the difference between 'to know how' (instrumental understanding) and 'to know not
only how but also why' (relational understanding). Ever since the same concern has been voiced
dressed in various guises and perspectives. Jones & Bush (1996) suggested that the notion of
mathematical structure is a good medium to explain the state of ‘comprehending the why'.
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Following Rickard (1996), we describe a (mathematical) structure as a set of objects along with
certain relations among those objects. Rickard's paper continues to further define structure
abstractly (via the notion of isomorphism), but we shall not follow this here. As far as we are
concerned, even though structure may be highly abstractly represented in axiomatic systems, it may
also be identified locally within a given context. If the structure has to be analyzed, it must be to
some extent extracted from the context, but this can be done in such a way where the contextual
referents are always at hand. [As Mason (1989) points out abstraction involves ‘drawing away’, or
‘divorcing’, rather than just extraction.] Our perspective of structure, then, is to strip away all the
intrinsic features and properties that are not relevant to a certain coherent means of manipulation of
a system. In this kind of analysis, then, a sense of what is essential and what is not is built up,
which surely contributes to an enhanced understanding of why approaches developed from the said
means of manipulation should work.

Though we will not claim that conceptual knowledge is disjoint from structural knowledge (i.e.
knowledge that is accrued from structural considerations), in essence the two are different in
character. Structural knowledge is based on analysis or at least on reflection on connections and
(inter-) relations (see Mamona-Downs & Downs, 2002), whereas conceptual knowledge depends on
holistic mental images where structure should be implicitly represented but its presence not
necessarily realized. However structural knowledge is meaningful; as a collorary, we contend that
not everything that makes sense in mathematics is due to it being somehow ‘conceptual’!

Structural knowledge is more flexible than it might at first seem. First, parallel structure may be
identified in different contexts and so associations are made between diverse mathematical topics.
If you do allow the notion of abstract structure, then these concrete manifestations may be regarded
as the various representations of the structure (again following Rickard.) Second, new
perspectives of structure or connections between non-parallel structures may be made by
considering (for example) different approaches of solving the same question. An important facet
here is that proofs often ‘import' structure that is not explicitly present in the context of the
proposition to be demonstrated. Taking these two notes together, we claim that thinking in
structural terms is highly beneficial in forming schemas, which in turn contributes to the range,
depth and linkage of the knowledge that is available for accessing.

Perhaps the role of representations deserves a little more explanation. Note now that we have
both concept images and representations as some sort of description of a mathematical entity; how
do these differ? Well, the difference is perhaps a matter of perspective, and may be best understood
by contrasting the following two casual phrases: ‘you can see it as’ for the image and “you see itin’
for a representation. A representation then can have features that may be exploited that would not
be available from a concept image. (For example, a graph as a concept image may be taken as a
way of understanding functions, but as a representation it may introduce notions like slope, not
integral to the abstract function definition.) In fact, because an image is identified with the entity, a
more relevant issue seems to be whether cognitive images can have representations (rather than to
ask how the two differ). Although we base representations on an abstract structural basis, we do
not want to give the impression that it is not appropriate to talk about a representation of a concept
image. But when we do refer to such a thing, we shall assume that the image is robustly consistent
to the structure of the mathematics that models the concept (so, if need be, the representation may
be put onto a structural footing).

=J
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Structural knowledge, being well suited to explain why things work, should be conducive for
acquiring and retaining knowledge. However neither traditional methods of teaching nor indeed
many reform or innovative pedagogical approaches put much emphasis on fostering structural
appreciation, so this potential source of cementing knowledge is largely not available for the
average student.

Because of the reasons given above, the typical student can have an impoverished stock of
knowledge compared to what could be hoped for from the curricula. As much of the information
received is not backed up with a sufficiently secure sense in meaning, either at the conceptual or
structural level, students will not retain much of the mathematical content to which they are
exposed to, and also much of the knowledge of certain powerful trains of thought needed in
successfully working in mathematics. True, procedural knowledge quite often can be memorized
through repeated use, but this knowledge is not valuable as a tool in problem solving unless some
of its structural underpinnings are appreciated. (We characterize procedural knowledge as
knowledge that is mentally held with little meaning or significance. Typically procedural
knowledge is the result of rote memory or results from procedures that were not comprehended or
appraised.) Hence often a student's mathematical knowledge is 'frail', a term used by Steiner
(1990), and as such must be largely ‘inert', as put by Whitehead (1929). The perspective of this
paper will be to concentrate on how to make inert knowledge into a more ‘active form'; we will not
take into account the possibility that the relevant knowledge might not be registered in the
individual’s mind in any form. Largely we will employ examples where the knowledge
'prerequisites' are not demanding. However this activity should in itself enrich and reinforce the
way that the underlying knowledge is understood, which, in turn, should strengthen its retention in
the mind.

Knowledge Schema Building — An Example

In order to maximize possibilities for applications of some particular knowledge to be made
available it is highly desirable to explore the knowledge from different perspectives and to seek for
linkages with other bodies of information. Doing this we say that we are forming a schema
centered around this knowledge. The notion of ‘schema’ has been given different interpretations in
the cognitive and educational literature. We mention the following three exemplars: (a) in the
Piagetian theory adaptation of knowledge occurs through the construction and modification of
schemata that constitute sequential manifestations of knowledge at different levels of mental
maturation, see for example Flavell (1963), (b) the schema based mathematical performance, as
analyzed by Hinsley, Hayes and Simon (1977), where it is argued that the student deals with a
problem by placing it in a broad category often from the statement (or parts of it) of the problem,
(c) in the APOS (Action — Process — Object — Schema) framework the schema associated with a
mathematical object encapsulates the building up and expresses the connections that relate actions,
processes or different protogenic objects to this particular mathematical object, Dubinsky (1991).
Analyses in these traditions tend to be either psychologically dominated, or if mathematical content
is a focus (as in APOS) the schema tends to be fairly ‘closed’ (self-referential to a single conceptual
source). An exception to this can be found in some strands of the epistemological tradition in
mathematics education, epitomized by the work of Anna Sierpinska. Here care is taken to compare
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related concepts in order to enhance the structural appreciation of a core concept. A good
exposition of this approach is to be found on Sierpinska's work on limits of sequences, Sierpinska
(1990). In this section we are not concerned in analyzing schemas per se, but we will illustrate the
kinds of dynamics of thought that may be involved in the actual process of building up some
strands of a schema.

Example 2

Consider the number of ways of selecting r things out of n things (r < n € |N). Denote this
number by C.,. We shall call C;, , as r and n vary, as choice numbers (rather than binomial
coefficients as not to anticipate the course of the exposition.) Cognitively, a choice number has
been assigned a certain significance in meaning apart from the fact that it represents an integer.
This meaning may be thought of as a conceptual counterpart of the following more formally stated
problem: calculate the number of subsets of order r in a set of order n. The words "selecting r
things out of n things" then qualify as a concept image. This image is stable enough to allow some
mental manipulation. For example, apart from informally arguing to obtain its standard algebraic
expression, we may further convincingly argue the identity

C 1n1 +Cn1 =C . All that has to be done is to pick out one thing A, and consider two cases;
in the first case we consider all choices of r things including A, in the second all choices excluding
A. This partition yields the result. Of course to accomplish this train of reason needs a certain
mental agility. Note that the reasoning involved is completely parallel with that which would have
been used had we attacked the counterpart problem instead. In general, it has been noted often that
different formulations of essentially the same problem can cause considerable change in solving
performance. (One might recall the famous experiment made by Simom and his colleagues, Simon
(1989) which showed that most people took significantly less time to 'solve’ an Hanoi Tower
problem compared to an exactly analogous task where the discs used in the Hanoi Tower puzzle
were replaced by acrobats of varying size, jumping off and on each others shoulders.) In the case
of comparing arguments afforded by the concept image with the parallel ones afforded by the
corresponding mathematically defined system, perhaps it is not so much appropriate to say that the
former will be the 'simpler. Rather they will tend to be the more transparent, whereas the
arguments from the formal system will be more concrete in the sense that one has the access to the
structure that the system avails.

We proceed now to describe two further ways of obtaining the identity

Crin1+Crn1=Cp.

(a) If you expand out (1+x)", there are 2" terms depending on whether you pick 1 or x in each
of the factors (1+x). For any one of these terms, if you have selected x in exactly r out of n factors,
the term equals x". Collecting like terms, we obtain the result that the coefficient of x" must equal
the number of ways of choosing r things out of n, i.e. is Cq.

Consider now the reformulation below:

1+x)" = (14x)" ' (14x).

If a choice of r x's is made such that the choice for the isolated factor (1+x) is 1 (x resp.), then a
choice is induced of picking r (-1 resp.) x's out of n-1 for (1+x)™"'. The identity

C rint + C o1 = C oy follows.
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(b) Imagine that you have an axb rectangular array of squares (a, b € |N) and denote the
extreme bottom left square by L and the extreme top right square by R. Placed on L is an object
that can be moved around the array only by making successive moves either going some spaces to
the right along a row or going up some spaces along a column. The number of routes that the object
can take to arrive at R is Ca.1 0402 This is because necessarily each route must involve exactly a+b-
2 'crossings' from one square to another; each crossing can be done either vertically or horizontally,
but in total for the route to end at R we must have exactly a-1 of the crossings done vertically. By
setting

a =r+l and b = n-r+1, we may identify C,, with the number of paths as described above. Now
all paths ending at R must either pass through the square immediately to its left or the square
immediately below. Knowing the number of routes going to these two squares as Crn.1 and Ce. it
respectively, we obtain our identity again.

Notice that both (a) and (b) constitute representations of the basic concept of enumerating ways
of choosing r things out of n. Apart from varying terminology due to contextual differences, the
argument to justify the identity C r.in1 + C a1 = C , is exactly the same in (a) and (b) as for our
initial concept image processing. As the identity on its own is clearly sufficient to calculate C:, for
any r, n by assuming appropriate initial values (basically the Pascal triangle represents the identity),
any relationship involving the choice numbers C., that can be shown in one situation may be shown
analogously in the other two. However this misses some important points; the context that the
representations provide can either contribute to providing cognitive tools or can actually afford
techniques that otherwise would not be available as we are now going to illustrate.

The choice numbers C;, are well known to provide a very rich system of formulae. (See e.g.
Anderson (1989), Chapter 2.) We will take the representations (a) and (b) and illustrate how having
experience with them could help a practitioner to procure some of these relationships. We shall
start with (b). This representation has the special feature of being able to be treated visually, and it
is the availability of diagrams that lead us quite naturally to obtain some results. We shall give just
one example. Any route from L to R must necessarily enter the top row at some column; once the
route has reached the top row, its path is determined. Hence the number of routes must equal the
sum (over all squares S in the second top row) of the routes starting from L and ending at S. This
yields the identity: C . + C 1 + C reir1 oot Crpnt = C e

Now this result simply could be attained by recursive use of C rjn1 + C o1 = C ¢, but by the
time that we start long summations it is difficult to maintain the original concept image in terms of
numbers of selecting things. Routes on arrays provide us with an alternative way to describe the
numbers C,,, where now interpretations of sums and products can be made. Because of this new
representation, certain identities become particularly significant and natural to extract (some of
which are not so obvious as the one that we have employed).

However, although (b) may guide or inspire direction for posing and solving, essentially it does
not offer any new methodology. The representation (a) is very different in this matter. The fact
that we are now imbedding the set of choice numbers into the system of polynomials brings in a
much more elaborate structure available for exploitation. For example, differentiation is now a
device we can utilize. The following formula is just an expression of the representation (a):

Con+Cinx+Cap Xt ot Cnx"=(1+x)"
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By substituting x = 1 does not give us anything that is not already conceptually clear. However
by the simple action of differentiating both sides and then substituting x = 1 we obtain a
relationship which is far from being intuitive:

Cin+2Cop+...+nCpp=n2"",

In this example, we have introduced a couple of representations of the set of choice numbers that
allow certain relationships between the choice numbers to be more easily and naturally formed.
However, in a way this situation can also be reversed. Many combinatorial problems yield answers
in terms of choice numbers, and it is important to simplify the resultant expressions if possible. In
this activity, we might well want to make use of the cognitive or structural tools that our
representations can offer. Hence the representations do not act only as platforms to inspire
problems and results, but they can also be invoked in a solving activity.

In general, representations, as well as weaker associations, provide the kind of net of
connections that would form a schema of a type likely to promote the application of knowledge to
problem solving. Representations are particularly potent components in the fabric of a schema
because of the closely drawn structural ties they have with the central concept image. What is even
more important is that representations often offer quite powerful and novel ways of thinking about a
theme, as we have illustrated in this section. If we can instill within the student an appreciation of
‘neat’ arguments, a representation that contributed to forming one is likely to be remembered. A
schema critically depends on memory enforced by structural awareness.

Forming broad schemas will significantly increase the chance that problem solving triggers links
with knowledge resources. However to take advantage of this fully the student must actively seek
out potential applications; this will be explained further in the next section.

The Process of Identifying Applications of Knowledge in
Problem Solving

To start with, we will consider a problem that needs little demand on the knowledge base. The
style of writing dealing with its solution is meant to highlight the role of the educational research
notion of control in problem solving, as explained in the book of Schoenfeld (1985). Indeed the
problem we use is taken from this book (p.94).

Example 3

Let (a), a2, ...,a,}and {b,, by ..,b,} be given sets of real numbers. Determine necessary
and sufficient conditions on {a ;} and {b ;} such that there are real constants A and B with the
property that

(a,x+b,; Y +(asx+by)+...+(ayx+b,) = (Ax+B)

for all values of x.

We will write down a solution, but not as you would expect it to be presented in a text, but to
reflect a plausible line of thought which could guide you to obtain an answer. You might start off
to see whether you can gain some conceptual image for this expression. For this problem,
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obtaining such an image is unlikely; and it would be an act of control to come to this realization.
Hence it would seem a structural approach is needed. A first perusal of the situation might draw
your attention to the variable x, and lead you to an assessment that the expression having to hold for
all x is a strong condition. Because of this it would seem to be a good idea to try out some
particular values of x. Are there 'special’ values that would be especially useful to employ? With
this question in mind you review the expression again. You note the special feature of the
expression that the left hand side is a sum of squared terms; if we drive this sum to zero then each
term must also become zero. This can be done by setting x = - B/A on the right hand side of the
expression. This breaks the back of the problem; necessarily all the quotients b ;: a ; must be equal,
and then it is straightforward to show that this condition is also sufficient.

Although the argument is not difficult, none of the students involved in the relevant fieldwork in
Schoenfeld (1985) were able to solve the task. The problem may be due to the very structural level
in which the strategy lies. When you are operating structurally, the main things concerning you are
to regard the variable x as a degree of freedom or choice, and to access basic knowledge of which
the most sophisticated is that a square is always non-negative. The combination of these two things
then might in fact be challenging for students to achieve. How can we help them? Well the core of
the strategy of our solution is to force the system into a special state of an often-used form; if the
sum of terms squared equal O then all the terms are zero (in [R). If this becomes a part of the
students' knowledge together with a habit to recall this knowledge whenever s/he meets a sum of
squares, the student would be in a much better position to answer. True this kind of 'cueing' of
knowledge does not represent the most creative thought, but we believe that it does play a very
important role in doing mathematics at any level. We shall resume this theme by discussing
techniques in the next section.

Example 4
Is there a partial sum of the harmonic series that is an integer, apart from 1?7 '

A sketch solution: Rewrite the n ™ partial sum as

Y Ix2x.. . x(k=D)x(k+1)x...xn
k=1

: (4)
n

For n22 an analysis of the numerator would reveal that the highest power of 2 dividing the
numerator is less than the highest power of 2 dividing n!. Hence none of the partial sums for n>2 is
integral.

We shall flesh out this solution, but (as in the previous example) in such a way to represent
some of the ‘background’ thoughts that would enable the forming of the argument. The philosophy
in doing this is to point out possible difficulties that students might have in obtaining this approach
by themselves, not necessarily to present a typical way that an expert would tackle the problem
cognitively. We proceed to consider some different stages of the solving process.

(1) Would students necessarily rewrite the n™ partial sum as done above? If they want to ‘size
up’ the problem to start off with, they might first be wanting to link up the issue raised in the
question with their knowledge of the harmonic series. The basic information they are likely to bear

* We were introduced to this problem by S. J. Hegedus
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on the issue is the fact that there always is a partial sum of the series which surpasses any particular
integer, and that the terms of the series tend to zero. This knowledge would seem inviting to
accommodate in a real number line image. The focus would then be naturally drawn to how
successive partial sums ‘jump over’ integers and how long these jumps are. If the students believe
that the answer to the question in the task is no, the natural strategy would be to try to construct
around each integer an interval such that no partial sum could be contained in the interval. Clearly
the lengths of these intervals would have to tend to zero. If, on the other hand, the students believe
that the answer to the question is yes, then they might be tempted to try to justify this existentially
on the following basis. As the closest partial sum to an integer gets arbitrarily close to the integer as
the integer becomes arbitrarily large, the expectation would be for the two to coincide eventually.
The first argument is not plausible, the second is an instance of a common misunderstanding that
students show for sequences and series, see for example Mamona-Downs (2002).

Hence the knowledge that would seem the most pertinent to the problem because of the setting
of the question does not seem to help us much. If students had started thinking in the ways
described above, they would likely to have to abandon it soon. It would then be an act of self-
regulation to decide to seek for alternative ways of approaching the question. Conceptually there
doesn’t seem to be much else to hold on to, but...

(2) there is a natural algebraic maneuver to make, the one taken in our sketch solution. It is
motivated more by a practice (i.e. if you have a sum of fractions what you ‘normally do’ is
reformulate it into a single fraction) rather than a conscious shift in strategy. The act performed
here is quite modest, but what is impressive is how this small move has opened up a very different
realm for the mind to explore compared to the one offered in (1) above. Students are now presented
with a quotient of two integers with the issue whether that quotient can represent an integer. Now
connections should be coming through from a completely different source of knowledge, including
fractions in lowest terms, highest common factors, the Euclidean algorithm, and prime
decomposition. Because of the algebraic form of the quotient, it is not likely to be able to carry out
the steps of the Euclidean algorithm. What seems to be the most propitious tool available is prime
decomposition. Up to now what has been employed is a global viewpoint of the question that did
not prove fruitful; prime decomposition offers a way to look at the present state of the solving by
local analysis (i.e. to consider prime power divisors for any prime independently from other primes)
and hence promises to be flexible. The processing of the knowledge of the unique factorization
theorem to suit the issue would be to check whether the greatest prime power divisor of the
numerator is greater or equal to the greatest prime power divisor of the denominator for each prime.
If for any n>2 this is so, our question will be answered in the affirmative; if none of n>2 satisfy it,
our answer will be negative. The issue is now set into a particular milieu.

(3) Now it is a good time to pause and take stock of the new issue and perspective. Some
structural reflection would reveal that for any given prime the greatest prime power divisor (GPPD)
of n! may be feasibly found; similarly for the separate terms in the summation of the numerator
(this information is not crucial anyway). What really should be of a concern is how to tackle the
additions in the numerator. For this we might step away from the context and consider this local
issue in the theoretical milieu, i.e. to work within the schema of the unique factorization theorem.
What readily available information is there about GPPDs over addition? Suppose that a and b are
positive integers, p is a prime and p° || a means that r is the greatest power of p dividing a. Then
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p'llaand p°lIb with r<s => p’ll(a+b) (B)

This result is straightforward; however no such universal results will be available in the case
when

r = s. The only elementary fact that can be deduced is:

p'llaand p*llb with r=s => p'l(a+b) (©)

Hence in the first case (i. e. r# s) there is perfect control of the GPPD, whereas in the second (r =
s) only little. What significance do these results have for the problem?

(4) As the main considerations about knowledge access for the problem are now covered, the
exposition we give shall be briefer from now on. We return to the present solving situation with the
attention on applying the knowledge given in (3) above in an efficient way, i.e. loosely speaking to
arrange things such that case (B) is used rather case (C) as far as possible. To prove that the answer
of the question is ‘no’, there are two working variables at hand; a particular prime p for basing the
GPPDs, and the order in which the summation of the terms of the numerator of (A) are to be taken.

It happens that if we choose p = 2 (for whatever partial sum considered) and take the natural
order of summation as suggested by the algebraic form of (A), then whenever we add the next term
to the aggregate presently considered we always are encountering case (B) rather than case (C).
(We leave the reader to explore this situation to understand why this happens.) This means that the
GPPD of the numerator for 2 equals the lowest GPPD of any term of the numerator for 2. If n>1,
the second term of the numerator is n!/2, which has a lower GPPD for 2 than does the denominator
n!. Thus it is established that there are no partial sums of the harmonic series that equal an integer
greater than 1.

Comments on educational issues concerning application of knowledge in example 4.

Despite the tools employed in this task are elementary, we feel that most mathematicians would
agree with us in saying that this approach would be understandably difficult for students to create
on their own. This can be partially explained by some of the classic themes espoused in the
problem-solving tradition. For example, self-regulation to decide when to change tactics or focus,
usage of explorative work, identifying patterns and extracting the right structure to construct proofs
are all likely to have their roles for anyone adopting the approach. All these types of activities
require skills involving flexible and individual thought. But on top of these there are further
demands on the students, in accessing knowledge. It is on this facet we will concentrate on.

The first thing to note is that the context of the question could lead a student to follow an
unpromising direction. The explicit mention of the harmonic series rather than just writing the mere
algebraic expression (1+ 1/2 + ...+ 1/n) would in itself encourage dynamic imagery related to
limiting properties. Even if the terminology was avoided in the presentation of the question, the
student is quite likely to make the association with the harmonic series anyway. What this
illustrates is that automated triggering in recalling knowledge may be misleading unless it is
accompanied with a sense of criticism. Given the observation that if students fail to succeed in
obtaining a solution using one argument they tend to give up rather than trying to find another,
quite a few students would be frustrated in this question because they happened to follow this line.

When we gather all the fractional terms of the partial sums into one fraction, we are entering a
mode of algebraic manipulation. Once students are in such a mode it seems very difficult for many
of them to get out of it again. They might have some insight how to handle symbolism to guide it
into some desired form, but it seems a rather foreign practice to impute meaning or intuitive
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significance whilst working algebraically. Without extracting meaning or significance, we are
unlikely to link our work with our (long-term) knowledge. The seemingly simple act of mentally
processing (A) as a quotient of two integers may well not be a natural one for students to perform.
Students’ behavior in this way could be enhanced in regular problem-solving courses.

The task in forming the connection between the situation of when a quotient of two integers
yields another and prime decomposition was underplayed in (2) above. Really would this
connection occur to a student? In general, the difficulty about accessing knowledge when it is not
triggered automatically is that the application of the knowledge has to be anticipated at the same
time as it is being accessed. In our case we might have to have an inkling how the fundamental
theorem of arithmetic will help before being motivated to recall it. This kind of impasse perhaps
might be avoided in our particular problem more than in others; triggering attention to prime
decomposition likely may be achieved by deliberately seeking for hints how to proceed. A
reflection that the present processing of the question is just an issue involving integers, and a
recollection that an important tool in analyzing integers are GPPDs would seem enough to make the
connection open for consideration. However how many students would make both the reflection
and the recollection would be debatable.

Another feature of our approach is how it illustrates how knowledge interacts with problem
solving. In (3) an issue raised on the level of specifically working on a particular problem was
‘lifted’ to the environment of the knowledge supporting that issue. Doing this helps to deliberate
the issue in its full generality, and having done this the resultant expanded knowledge is pumped
back into the solving environment to guide further strategy. Hence, in a sense the knowledge is
responsive to the working as well as vice-versa. This though represents another switch of mode in
thinking, and so comprises yet another challenge to the student.

Techniques

We regard a (mathematical) technique as a (mathematical) method with the following
characteristics:

() There is a recognizable structural cue that suggests that the technique may be applied.

() There are one or more standardized steps or sub-goals to achieve, but typically there may
be substantial problem solving involved in attaining these goals.

(IIT) The final step will yield some information of an identifiable type.

Perhaps any method might satisfy the above traits to a degree, but we think of a technique of
being quite tightly constrained by them. In general, we consider methods to be less explicit and
more flexible than techniques.

Techniques are associated with certain structural references, and as such are very different from
heuristics, which tend to act as general advice in setting up strategy in problem solving. However
there are some similarities between the two, in particular in the way that both can be rather
speculative ways of working. (The problem solving aspect of a technique means that we are not
assured to be able to carry out the technique even if it is suitably applied.) Because of this it is
quite useful to think of a technique as, loosely speaking, lying between algorithms and heuristics as
suggested by Schoenfeld (personal communication).
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It is the feature of the cue that makes techniques highly significant in the process of accessing
knowledge in problem solving. This feature means that whenever the relevant structural pattern is
recognized, the student should be triggered to think about the technique. The technique itself
comprises a rather specialized processing of knowledge. Hence the technique automates the
(otherwise cognitively difficult) act of retrieving pertinent knowledge.

When the structural cue is strongly associated with some particular conceptual imagery then the
application of the technique usually becomes habitual after some experience. For example students
soon familiarize themselves with the standard techniques of optimization of (smooth) real functions
using calculus tools. (Note that such techniques are not algorithmic, as finding roots is not
necessarily easy.) However when the structure implicit in the cue is not identified with a single
specific mathematical context then we find that techniques are usually not taught nor consciously
held in the mind of the students. As a consequence, the tendency is that the broader a technique is,
the less it is appreciated.

One broad technique that definitely is usually taught though is induction. Note that although the
technique itself can be supported by fairly evocative imagery (e.g. a line of dominoes placed in a
line in such a way that the knocking down of the first will cause all the others to fall in sequence),
the description of the cue must be very general and may not seem very concrete. Perhaps it could
be characterized by the identification of a family of objects indexed by the positive integers
together with an explicit hypothesis about a property of the objects. This encompasses a much
more extensive vista of applications of induction than those typically 'registered’ by the student that
might only stretch to proving algebraic identities. (And even in this case students may only use
induction when directed to do so.) Another facet that further restricts students' vision about
induction is that usually their experience with the technique is limited to situations where the
'hypothesis' to use is more or less given to them. A more creative situation (and one that would be
more true to research work) would be for the students to provide the hypothesis themselves. One
way of attempting to do this would be to do some experimental work by examining the property for
some specific members of the family of objects and to try to discern a pattern as a basis to forming
a hypothesis. In this way we have added a new constructive first step to our original technique (i.e.
to develop a hypothesis), and as a result the cue widens even more. We shall call such extensions
as constructively widened techniques.

Another hugely important technique that also admits a constructively widened technique is the
use of 1:1 correspondences for enumeration purposes. In the basic form of the technique the cue is
the situation of having two (finite) sets, A and B say, for one of which (say B) we know the order
(i.e. the number of elements) and for the other (A) we wish to find the order (or a bound to it). The
task involved in the technique is to construct a 1:1 correspondence from a certain set of subsets of B
into or onto A, and then deduce some information about |A|. In the constructively widened form the
cue becomes simply a set A about whose order we want some information. The first stage of the
technique now is to identify or construct a second set B for which it would seem propitious to form
a 1:1 correspondence with A.

Even though the knowledge on which this technique is based on is both elementary and
fundamental (i.e. a bijection preserves set order), students might well not be able to utilize it as
suggested in the technique above. It is important that the students have processed the knowledge
exactly into the context of the cue. Then whenever instances of the cue are recognized, there
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should be awareness on the part of the students that the technique is available. (Of course they
might choose not to pursue it because they can foresee difficulties or an alternative approach that
they prefer.) There are two ways of instigating such awareness; first to explicitly introduce a
description of the technique and its cue in class, and second to give the students a sequence of
relevant tasks, starting with those yielding the most transparent applications. An important
technique deserves some focused pedagogical attention.

To illustrate the points I have just made, I shall briefly describe some fieldwork that I have
recently conducted with the collaboration of M. Downs on the technique of employing 1:1
correspondences for enumeration. The participants were volunteers from a 'proof’ course that is
mainly directed towards students contemplating to take a major in Mathematics. They all had
similar tertiary-level mathematical background; each had passed a couple of courses in calculus and
one in linear algebra. The institution involved is the University of California, Berkeley. The
fieldwork comprised two stages. In the first the six participants worked on a problem sheet on their
own. The second was a teaching experiment; it consisted of an open discussion between the
participants (four students) about the same problems, with the researchers sometimes prompting its
direction. The tasks were designed so that each could be solved by constructing a suitable bijection;
however some afforded alternative approaches, but these would always be tedious and more 'messy’
in comparison. In their proof course, the students had just been exposed to a short formal treatment
of bijections.

The motivation behind the 'written' stage was to see how well the students were already
equipped for applying the technique. The responses indicated that on the main the students did not
exploit the bijections that were fairly natural to invoke. In one problem one student did give a
correct answer by an informal bijective argument, but it transpired that that student had met the
question and the approach before. Otherwise the students either did not progress, or opted for the
more tedious methods available or worked experimentally. These results would strongly suggest
that this population was not able to apply the technique. But what was interesting is that at several
places the students wrote notes as asides to their main argument that expressed the basic idea that
would have supported the construction of a bijection had the technique been followed. The
students seemed not to have the means or confidence to develop the ideas. The mere awareness of
the technique as a mentally registered entity probably would have been sufficient to allow the
students to utilize these ideas to promote complete arguments.

We attempted to test the validity of this conjecture in the ‘teaching experiment’ part of the
fieldwork. Once we had introduced a background of employing bijections into the session, we
wanted to see how easily the students would construct the appropriate correspondences and to
observe any ways that they seemed not to be at ease. We illustrate the results by summarizing what
happened with one task considered in the session.

Fieldwork Question
Let C be a circle, and suppose that py, . . . , p. are n points on C. Construct all chords of C
connecting 2 points from py, . .., p.. A crossing is a point strictly inside C that is an intersection

point of the constructed chords. What is the maximum number of crossings? (That is find the
number of crossings with the assumption that each crossing lies on only two chords.)
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In order to start the discussion for this question, the researchers drew two simple diagrams on
the blackboard, both showing a circle. Picture 1 further indicated a single chord, picture 2 one
crossing and the two chords that intersect there. Picture 1 was meant to act as a prompt towards an
analysis via considering the number of crossings on a chord. As this number is not constant, this
approach is involved though still viable. Picture 2 was meant to hint a neat way of solving the
problem using a bijection in the spirit of our technique; correspond any crossing with the set of four
boundary points formed by the end points of the two chords passing through it. We may then
deduce that the number of crossings is Cy, p.

After agreeing early on that the number of crossings on a chord is not constant, the students'
attention was solely caught on figure 2 rather than figure 1. Almost immediately one student put
forward the bijective argument that allows you to equate the number of crossings with the number
of subsets of order 4 of the set {pi, . . ., pa}. For this student, though, this action had merely
transposed the original problem to a new one, because he was not familiar with choice numbers.
Another student who had studied combinations before helped out, so the participants could at least
understand that the new form of the problem was now a standard one. However this is rather a side
issue in respect to the application of the enumeration technique. Two out of the four students
showed themselves very comfortable with the bijective argument; even though it was understood on
the intuitive level, it proved quite robust when these two students were asked to justify why the
relation is 1:1 and onto. The other two students though obviously had misgivings. One of these
students consistently showed a dislike or mistrust of the technique in general. She preferred
alternative approaches such as breaking the problem down into stages or cases, or employed
experimental examination. These procedures seemed a lot more secure and concrete to her than the
highly constructive aspects of the technique. The remaining student though had shown himself
receptive to the technique in other tasks, his qualms were more local to this particular question. He
seemed to appreciate the bijective argument but he appeared not to believe that the simple local
structure (as suggested in figure 2) can possibly represent the complicated looking structure of the
whole system. In a way, his wish to reconcile the local structure with the global is to be applauded,
but it put him to some disadvantage compared to the students who did not feel the cognitive need to
attempt such assimilation.

Let us now try to draw together our thoughts about how techniques affect the process of
accessing knowledge for problem solving purposes. Techniques that are intimately tied with a
certain closed content domain should largely become part of the schema centered around the
relevant concept image; the linkage of problem solving in this case would likely first pass through
the image and then (if appropriate) to the technique. (For example problem solving might reveal an
issue on optimization that leads you to use the standard calculus techniques.) This kind of
circumstance is not so significant to our theme. However the situation where the technique is
broader and can be applied in many mathematical contexts is different. Indeed we do not suppose
that these contexts have been identified or listed. Whenever the problem solving activity happens
to wander into any one of these contexts and the present state of the system reveals (or brings up an
issue concerning) the particular type of structure as described in the cue, then the technique is
available for application. This needs both an awareness of the technique and a general alertness in
'spotting’ the cue. However what is provided by the technique is a standardized way of channeling
a common structural feature or issue into knowledge processed in a particular way likely to advance
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a solution. We believe that this role of techniques is vitally important in rendering some of the
more creative aspects in mathematics somewhat more routine and accessible. The most general
techniques, such as employing correspondences, could truly be considered as very potent universal
lines of thought in doing mathematics. However we should not forget about techniques of more
modest significance; these are often under-employed because they have been given dominant
associations, so that the technique tends to be used in limited contexts. (For example the technique
of partial fractions is likely to be used only for solving integrals.)

Our fieldwork on enumeration via bijections suggests several educational issues. Firstly,
because broad techniques do not usually have an identity for students, even if students have an
intuition about a relevant relationship they may lack the framework to develop it. Hence it seems
important to teach students some of the most consequential techniques, just as induction is taught.
Doing and discussing a sequence of tasks pinpointing applications of the technique seems an
effective way to achieve this. In our fieldwork, three out of four of the students seemed to come out
of the discussion stage with a fair appreciation of the enumerative technique; one student at the end
of the session said: "I learned a lot and had never thought of bijections in this way before".
However there are caveats. The fourth student did not seem to get on with the technique at all.
From the constructivist perspective of mathematics education we might be criticized in trying to
impose methodology. However we feel that this may be countered by the argument that basic
techniques form such vital ways of thinking that we cannot afford to let students believe that they
can bypass them by inventing their own methods each time. The student would risk lacking the
possession of essential problem-solving tools.

A second consideration is that although a technique has its problem-solving aspects, it also has
procedural aspects. The latter means that an application of a technique may not elucidate its role
within the global structure. Hence a reliance on a technique may represent an undue restriction in
thinking about a system. This problem, though, is really a question concerning self-regulation.

Epilogue

The main pioneer of problem solving as a discipline in mathematics is generally considered as
being Polya. His work on heuristics, especially the book "How to solve it" (1945), on the main
received a good reception from mathematicians. However subsequent fieldwork based on his
philosophies did not live up to expectations. Later, educational researchers such as Schoenfeld
attempted to find the cause of these disappointments. What was decided was that Polya had
succeeded to lay down a tactical base for problem solving, but had left out a managerial aspect.
This led to mathematics educators to adopt the psychological notion of metacognition (roughly
speaking, self-consciousness of your own cognitive processes). This is split into four main
categories: resources, control, belief systems and classroom community influences (see Schoenfeld,
1985). It is in the category of resources that knowledge is treated; Schoenfeld summarizes it thus,
p.44 ibid:

Resources are the body of knowledge that an individual is capable of bringing to bear in a
particular mathematical situation. They are the factual, procedural, and propositional knowledge
possessed by the individual. The key phrase here is "capable to bear"; one needs to know what an
individual might have been able to do, in order to understand what the individual did do.
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Clearly the topic of resources pertains a lot to cognitive science, as it is the human brain that is
storing and processing information. However scientists in this field have only been able to model
mental operations relevant to mathematical knowledge where linkages occur spontaneously and are
“nearly automatic”. [For a comprehensive account of this work see Silver (1987).] Mathematics
educators in problem solving have noted these limitations, but without the backing of cognitive
theory for more sophisticated channels of accessing knowledge they have preferred not to expand
so much on the knowledge base, but to concentrate on control with which "... solvers can make the
most of their resources” (Schoenfeld, 1985). From this standpoint problem solving then seems to
depend on triggering associations with the available resources. The perspective of this paper is how
to make these triggering processes more effective, and to stress that the act of knowledge accessing
for problem-solving purposes can be far from being mechanized in contrast to what the
psychological literature seems to suggest.

In this regard, we are guided by a naive metaphor where we imagine knowledge providing
'hooks' and problem solving situations as providing 'loops’. By increasing the number and size of
the hooks and loops we increase the chance that a pair will clasp. Augmenting the size of a hook
involves securing and enhancing a reliable concept image, and processing it in a convenient way for
its application. Creating new hooks, in the context of a fixed body of definitional knowledge, is
done through making connections and forming schemata. By enlarging a loop we mean that we
become more aware of the structural aspects of the present state of the working system. Finally we
may guide our system into another state, perhaps motivated by a realization that a linkage with
some knowledge is imminent, to make further loops’.

Poincaré in his essay Mathematical Creation (Poincaré, 1913) made a similar metaphor, for
knowledge interactions in the context of unconscious incubation preceding a sudden inspiration;
“the future elements of our combinations are something like the hooked atoms of Epicurus”.
However our use pertains to a different circumstance; we are consciously attempting to let
knowledge bear on our solving activities. But very often in order to do this we have to
simultaneously anticipate what knowledge is required and consider how to manipulate the system
into a state that affords an application of that knowledge. Cognitively this is a difficult demand on
students, and the situation is worsened by the fact that the issues overcome in such situations are
completely lost in standard style presentation. In general, we advise that some account of the
‘thought behind' a solution appears in its exposition, in the same sort of spirit Leron (1983)
recommended that the rationale of the constructions made in a proof be informally explained.

However what was said above might suggest a picture that for every individual problem-solving
scenario considered we are creating essentially a novel set of ideas, connections and strategies.
This clearly is misleading. Mathematical arguments in detail have a bewildering variety, but in
outline there seems to be a relatively few types of central features that support them. Taking
advantage of these common characteristics is of huge importance; it allows mathematicians to
identify types of arguments that can be treated in a similar way. This factor has to be accounted for
in our thesis. In this paper we restricted ourselves to what might be the most tangible form of
unifying argumentation, that is through techniques. Our description of techniques is such that some
very fundamental ways of thinking in mathematics are represented. These require on the face of it
only slight re-processing of basic knowledge, but a fieldwork we conducted suggested that students
were not alert to the particular technique involved. We propose that some important broad
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techniques should be explicitly taught. Here we acknowledge the difficulty of already crowded
syllabi. However we believe if we were able to accustom students not only to interiorize arguments
together with the mathematical facts they provide, but also to take in some of the structural features
of the arguments divorced from the facts then the exercise would be justified. For in this
circumstance students will start to get in the habit of developing working techniques for themselves.

We note that techniques help in the problem of 'transfer' often referred to in the educational
literature. The problem of transfer is about the common phenomenon that students (at all ages)
often behave as if they do not recognize analogous problems set in different contexts. Silver's
research, Silver (1979), showed that this was mainly due to students not being aware of the
underlying mathematical structure. Sierpinska (1995) elaborated this theme, claiming that a present
trend in mathematics education at school level suggesting that task contexts should emulate as far
as possible 'real-life’ situations is detrimental to the transferal of problems. The main message in
her paper is that school tasks should be concerned about ‘"applications’, without worrying too much
about the applications’ status of being either abstract or authentic to reality. She states:

We need 'contexts', but only in the sense of problems that give meaning and sense to what
students learn: knowledge is always an answer to a question,

Silver's and Sierpinska's position for school mathematics is somewhat similar to ours for tertiary
level problem solving. What we can expect of more mature students is to develop a sense of
structure. We believe that meaning in mathematics has both conceptual and structural aspects.
Conceptual thinking can be both limited and unreliable without accompanying structural
appreciation. Structural considerations do not have to be regarded as being abstract, but we
conjecture that it is mostly at the level of recognition of parallel structure that the transfer problem
is to be resolved. The parallel structure ‘connects' with the same knowledge basis, which then is
‘applied’.

The theme of reflecting on structure is a recurring one in our paper. The word structure is one
that is commonly employed in mathematics education literature but it rarely forms a focus for
analysis. Picking up from Sierpinska's assertion that "knowledge is always an answer to a
question”, we note that this does not seem to represent well how most students retain their
knowledge. In truth, the typical student is not often engaged in pondering about mathematical
issues but usually is immersed in tackling a mass of exercises. For this reason the student's
appreciation of her/ his mathematical knowledge will usually be superficial, and not very effective
for use in problem solving. To learn through issues typically requires the unraveling of a rich
mixture of motivations both at the structural and the conceptual level. Much the same combination
is required for problem solving itself; sometimes informal arguments based on the conceptual
image suffices, sometimes arguments are made completely from structural considerations, but most
problem-solving tasks involve a blending of the two. But thinking conceptually and thinking
structurally seem to form disparate modes. On the metacognitive level we feel that it is important
for students to be aware of these two modes of thought. This would represent an important aspect
in control; that is, taking the decision about which mode would be the more profitable to assume at
any particular time in a solving path.
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MATHEMATICS AND OTHER DISCIPLINES
The Impact of Modern Mathematics in other Disciplines
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ABSTRACT

The impact of modern mathematics and its application in other disciplines is presented from the 20"
century historical perspective. In the period 1930's to 1970’s mathematics became more inward looking, and
the distinction between pure and applied mathematics became much more pronounced. In the 1970s, there
was a return to more classical topics but on a new level and this resulted in a new convergence between
mathematics and physics. The 20'" century approach to mathematics resulted in a more developed
mathematical language, new powerful mathematical tools, and inspired new application areas that have
resulted in tremendous discoveries in other applied sciences. Towards the end of the 20" Century,
mathematicians were making a re-think on the need to bridge the division lines within mathematics, to open
up more for other disciplines and to foster the line of inter-discipline research. The current cry is that this
interaction will be further strengthened in the 2 1st Century.
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1. Introduction

Mathematics has been vital to the development of civilization. From ancient to modern times
mathematics has been fundamental to advances in science, engineering, and philosophy.
Developments in modern mathematics have been driven by a number of motivations that can be
categorised into the solution of a difficult problem and the creation of new theory enlarging the
fields of applications of mathematics. Very often the solution of a concrete difficult problem is
based on the creation of a new mathematical theory. While on the other hand creation of a new
mathematical theory may lead to the solution of an old classical problem, (Monastyrsky, 2001).
This paper is discussing the current role of mathematics in other disciplines.

The presentation is in four parts. Section 2 is dealing with trends of application areas of
mathematics at the wake of the twentieth century, Section 3 looks at the changes in mathematics
application as a result of the modem approach to mathematics and discoveries in other scientific
fields, section 4 addresses the current (21 century) thinking of collaborative and inter discipline
mathematics and the section 5 gives some examples of application areas where mathematics is
emerging as a vital component with great opportunities for inter discipline research.

2. Trends of Applications in the 20" Century

The 20" century made a rethink on the foundations of mathematics, it was characterised by a
new approach to mathematics, fuelled by David Hilbert's (1862-1943) famous set of
"mathematical problems" in the 1990 International Congress of Mathematicians. Hilbert's vision
was to analyse axioms of each subject and state results in their full generality. This vision became
concrete in the 1930's through the development of the axiomatic approach to algebra, pioneered
by E. Artin and Edith Noether. Parallel trends took place in functional analysis with Banach
Spaces. This spread rapidly to algebraic topology, harmonic analysis and partial differential
equations. In addition to this axiomatic approach, the Bourbaki group introduced the idea that
there was one universal set of definitions, which once learnt, would be the foundations of
everything more specialised (Mumford, 1998). In the drive to seek generality, 20" century
mathematics became more diverse, more structured and more complex.

2.1 Divergence of Mathematics from Physics

In the 18" and 19" century mathematical language was vague and did not allow much
interaction among mathematicians of different fields. In the period 1950s to 1970
Mathematicians concentrated around problems of algebraic topology, algebraic geometry and
complex analysis and they developed new concepts and new methods. New powerful
mathematical tools were developed and the language of mathematics became highly developed
and very powerful. This has had great impact on diverse fields such as number theory, set theory,
geometry, topology and partial differential equations. This new approach to mathematics resulted
in greater abstraction. Mathematicians spent years of apprenticeship in a full set of abstraction
before doing their own thinking. When the basics were clear enough there was a search for
powerful tools that allowed for development and expansion of the geometric intuition into new
domains. Examples are topology, homological algebra and algebraic geometry. These new



developments made it possible for great breakthroughs in solving several difficult problems that
were stuck. For example the Deligne’s proof of Weil conjectures, Faltings’ proof of Mordel
conjecture and Wiles’ proof of Fermat’s theorem could not have been done in the 19" century just
because mathematics was not developed enough. Mathematics of the 20" century has started the
path for harmonising and unifying diverse fields. The unification of mathematics started with a
common language that has greatly simplified the interaction between mathematicians. This
language became the basis for development of new technical tools for the solution of old
problems and the formulation of research programmes.

As a consequence of the new approach to mathematics, pure mathematicians drifted away
from applications and saw no need to collaborate with other scientists, even their traditional
neighbours, and the physicists. On the other hand, application of the highly abstract modem
mathematics could not be easily visualised by the traditional users of mathematics. The period
1930's to 1970's saw a divergence within mathematics itself and between mathematics and other
applied sciences. Mathematics became more inward looking, and the distinction between pure
and applied mathematics became much more pronounced. The diversification of mathematics was
first of all connected with external social phenomenon, the rapid growth of the scientific
community and the breaking discoveries in physics.

The traditional area of application of mathematics is physics. Within this area the deepest
mathematics and success stories have been achieved. For example, Einstein's general theory of
relativity was based on classical differential geometry of Riemannian spaces, the Hilbert spaces,
the theory of linear operators, and spectral theory. In the 1930's the connection of mathematics
and other sciences, especially physics was broken. Physicists got interested in solving more
concrete problems that could be solved without the application of sophisticated and abstract
modern mathematics. The developments of pure mathematics in the post World War I period
became weakly connected with applied sciences especially physics. Mathematicians' could not
view how physics could assist modern mathematics while physicist could not imagine the
application of new abstract mathematical concepts such as sheaf, cohomolgy, J- functor and the
like in their fields (Monastyrsky, 2001).

2.2 Re-Convergence of Mathematics with Physics

From the beginning of 1970s, there was a return to more classical topics but on a new level.
These developments resulted in the new convergence between mathematics and physics. Some
moderm mathematicians (e.g. S. Novikon, S.T. Yau, A. Connes, S. Donaldson and E. Witten)
quickly saw new opportunities and challenges hidden in the new physics. Examples of
mathematical results that got inspired by physical ideas include Donaldson's proof of the
existence of different differential structures on simply connected 4-dimensional manifolds. This
has very deep consequences for quantum gravity and the gauge theory on strong and weak
interactions and resulted in the revisit of the Yang-Mills equations of elementary particles, which
had been developed by physicists C. N. Yang and R. Mills almost twenty years earlier in 1954.
The Yang-Mills equations had been considered non-physical and had attracted very little attention
of physicists. Structures in the elementary particles are described by highly nonlinear equations
with deep topological properties. Donaldson’s proof inspired physicists to do a deeper study of the
Yang-Mills equations. In the 1970's information flow between mathematicians and physicists
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resumed and led to new and deeper connections between modern mathematicians and physicists.
Basing on this new union, theoretical physicists have made substantial progress in uncovering the
principles governing particle interaction. The new conservation laws developed in the last part of
the 20" Century are believed to be the most fundamental in physics. Most success stories of
application of pure, most abstract mathematics are in physics. The application of modern abstract
mathematics in physics has resulted in astounding discoveries of the 20™ Century in the physical
sciences, the life sciences and technology. : ’

The new approach to mathematics resulted in a more developed mathematical language, new
powerful mathematical tools, and inspired new application areas that have resulted in tremendous
discoveries in other applied sciences including computer science and computer technology. The
new mathematical tools and the developments in computer technology, the development of
algorithms, mathematical modelling and scientific computing have led to remarkable new
discoveries is physics, technology, economics and other sciences in the last half of the 20"
century. This has also enabled mathematicians to use modern mathematical tools to solve deep
classical problems left by the previous generation of mathematicians.

3. New Application Areas

The branch of mathematics traditionally used in the applications in physics is analysis and
differential geometry. Most of the advances in pure mathematics were propelled by problems in
physics. In the last part of the 20" century researchers in many other sciences have come to a
point where they need serious mathematical tools. The tools of mathematical analysis and
differential geometry were no longer adequate. For example a biologist trying to understand the
genetic code will need tools of graph theory than differential equations because the genetic code
is discrete. Issues of information content, redundancy or stability of the code are more likely to
find tools of theoretical computer science useful than those of chssical mathematics are. Even in
physics discrete systems such as elementary particles need use of combinatorial tools and
statistical mechanics need tools of graph theory and probability theory. Traditionally economics
is a heavy user of applied mathematics toolbox. Now economics utilises sophisticated
mathematics in operations research such as linear programming, integer programming and other
combinatorial optimisation models, (Lovasz, Laszlo, (1998)).

3.1 Bridging the Division Lines

Developments in computer technology have re-activated some areas in the fields of discrete
mathematics, formal logic and probability that were otherwise dormant for a long time. Examples
include the vast and rapid developments in the areas of algorithms, databases, formal languages,
as well as cryptography and computer security. Just about 25 years ago questions in number
theory that seemed to belong to the purest, most classical and completely in applicable
mathematics now belong to the core of mathematical cryptology and computer security.

Towards the end of the 20" Century, mathematicians were making a re-think on the need to
bridge the division lines within mathematics, to open up more for other disciplines and to foster
the line of inter-discipline research. The current cry is that this interaction will be further
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strengthened in the 21st Century. Many believe it is better to view pure and applied mathematics
as a continuum rather than as two competing and hostile camps.

Efforts being undertaken in other scientific communities will bring the full range of
mathematical techniques to bear on the great scientific challenges of our time. It is quite obvious
that in this century, the need for mathematics to enrich other scientific disciplines, and vice versa,
is most urgent. Currently there is a sense of readiness among mathematicians to interact with the
world around them. Currently there is a sense of readiness among mathematicians to interact with
the world around them. This is in addition to continuing the pursuit of mathematics for internal
motivations such as revealing its inherent beauty and understanding its coherent symmetries.

Being the language of sciences, mathematics has a great potential t0 make tremendous
contributions to the other sciences. The current move is b breakdown barriers that still exist
between mathematicians and other scientists. For example, there is still a large gap in the
knowledge of physics. The two main pillars of 20" century physics, quantum theory and
Einstein's general theory of relativity are mutually incompatible. It is speculated whether string
theory and other most abstract mathematics areas will provide the solution. Mathematicians and
theoretical physicists are busy working to bridge this gap.

3.2 Potential Contribution to Other Fields

As evidenced by the discoveries of the last half of the 20" century, mathematics can enrich not
only physics and the other physical sciences, but also medicine and the biomedical sciences and
engineering. It can also play a role in such practical matters as how to speed the flow of traffic on
the Internet or sharpen the transmission of digitised images, how to better understand and
possibly predict patterns in the stock market, how to gain insights into human behaviour, and
even how to enrich the entertainment world through contributions to digital technology.

Through mathematical modelling, numerical experiments, analytical studies and other
mathematical techniques, mathematics can make enormous contributions to many fields.
Mathematics has to do with human genes, the world of finance and geometric motions. For
example, science now has a huge body of genetic information, and researchers need mathematical
methods and algorithms to search the data as well as clustering methods and computer models
(among others) to interpret the data. Finance is very mathematical; it has to do with derivatives,
risk management, porifolio management and stock options. All these are modelled
mathematically, and consequently mathematicians are having a real impact on how those
businesses are evolving. Motion driven by the geometry of interfaces is omnipresent in many
areas of science from growing crystals for manufacturing semiconductors to tracking tumours in
biomedical images. The convergence of mathematics and the life sciences, which was not
foreseen a generation ago, is a tremendous opportunity for application.

4. Inter-Discipline Mathematics

Currently, efforts are being undertaken to facilitate collaborative research across traditional
academic fields and to help train a new generation of interdisciplinary mathematicians and
scientists. Also similar efforts are slowly being introduced in undergraduate and postgraduate
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mathematics curricula and pedagogy. Disciplines that hitherto hardly used mathematics in their
curricula are now demanding substantial doses of knowledge of and skills in mathematics. For
example the pre-requisites for mathematical knowledge and skills for entry in into biological and
other life sciences as well as the mathematics content in the university curricula of these
programmes is becoming quite substantial. Curricula for the social sciences programmes now
include sophisticated mathematics over and above the traditional descriptive statistics. Curricula
of some universities in the developed countries have inter-disciplinary programmes where
mathematics students and students from other sciences (including social sciences) work jointly on
projects. The aim is to prepare graduates for the new approaches and practices in their fields and
careers.

4.1 Examples of Inter-Discipline in Research

Complexity theory is an example of inter-discipline and is the new focus on research in
mathematics (Hoyningen-Huene, er al 1999). Certain essential details of complexity have been
known for quite some time. At the end of the 19" century, the first source of a general idea of
complex systems was research in dynamical systems, in the context of classical mechanics. It is
an interdisciplinary approach fuelled by sophisticated mathematics, mathematical modelling and
computer simulation, inspired by observations made on complex systems in the most diverse
fields including meteorology, climate research, ecology, economics, physics, embryology,
computer networks and many more. Examples are systems that adapt to changes in their
environment in an extremely surprising way. They include Economics (economy of a country),
Biodiversity (ecosystem of a pond), Biology (the immune system of an organism) and Artificial
Intelligence (Computer Networks).

Probability theory seems to bridge most of the division lines within mathematics. The
importance of probabilistic methods in almost all areas of mathematics is exploding. Probability
theory is one illustration of the unity of mathematics that goes deeper than just using tools from
other branches of mathematics. With probability theory, many basic questions can be modelled as
discrete or as continuous problems.

4.2 Nlustration of Current Needs Of Mathematics in University Curricula

The role of mathematics in other disciplines has become clearer. I will illustrate this by
making quotations from a public reaction to a decision by the Rochester University to reduce the
size of mathematics faculty.

Below are quotations from an article titled "Demotion of mathematics meets groundswell of
protest" by Arthur Jaffe, Harvard University, President-elect, American Mathematical Society
(AMS), Salah Baouendi, University of California at San Diego, Past Chair, AMS Committee on
the Profession and Joseph Lipman, Purdue University, Chair, AMS Committee on the Profession
presents the statements from different people. The article dated February 1, 1996, is available on
the Intemet http://www.ams.org/committee/profession/rochester.html and it appeared in Notices
of the American Mathematical Society. "In 1996, the University of Rochester planed to
downgrade its mathematics program by reducing faculty size and closing down some
postgraduate programmes. University of Rochester's plan met with outright protest not only from
mathematicians but also from well-known scientists both in universities and in business. Strong
protest statements were made by at least six Nobel laureates, by dozens of members of the



National Academy of Sciences, as well as by other leaders in science and industry. The
outpouring came from many fields, including biology, chemistry, computer science, economics,
geology, mathematics, philosophy, physics, and sociology".

Below are verbatim quotations of some of the statements:

31 professors in the Harvard physics department (including 3 Nobel laureates) wrote: "Recent
history confirms the interaction between fundamental mathematical concepts and advances in
science and technology. We believe that it is impossible to have a leading university in science
and technology without a leading department of mathematics".

Norman Ramsey, Nobel laureate in physics, remarked: "If you had only one science
department at a university, it would be mathematics, and you build from there".

All members of the Harvard chemistry department, including one Nobel laureate wrote: "For
centuries, mathematics has rightly been termed “the queen of the sciences,” and this is just as apt
today. In particular, chemistry has benefited more and more from mathematical developments and
concepts. A university that aims to have a worthy program in science and technology simply must
have a genuine department of mathematics pursuing original research”

Steven Weinberg, University of Texas, Nobel laureate in physics stated the following: "I am
not a mathematician, but I regard mathematics as the core of any research program in the physical
sciences. If you do not have a graduate program in mathematics, then eventually you will have no
research mathematicians, which will make Rochester far less attractive to theoretical physicists.
Experimental physicists may not feel the loss of the mathematics program directly, but with fewer
first-rate theoretical physicists you will begin to lose your best experimentalists as well. You will
also be weakened in your ability to compete for good students; both graduate and advanced
undergraduate physics students need to take advanced courses in mathematics, which can only be
taught well by active research mathematicians. I imagine that similar effects will eventually be
felt in your chemistry and optics departments. I would not advise any prospective undergraduate
or graduate student who wishes to concentrate on the physical sciences to go to a university that
did not have a graduate program in mathematics".

Joel Moses, a computer scientist and provost at MIT, wrote: "I for one cannot imagine
operating a school of engineering in the absence of a strong and research-oriented mathematics
department. The same can be said for a school of science. I am also dismayed at the prospect of
covering a substantial portion of the teaching load in mathematics with adjunct faculty".

George Backus, research professor of geophysics at the University of California at San Diego
and a member of the National Academy of Sciences, wrote: "At UCSD, the Institute of
Geophysics and the Scripps Institute of Oceanography often recommend that our Ph.D. students
take graduate courses in the UCSD Department of Mathematics. Modern theoretical geophysics
and physical oceanography simply cannot be done without sophisticated modern mathematics. To
teach these [advanced mathematical subjects] with sophistication and insight requires people for
whom they are the primary research interest".

Neil A. Frankel, manager, Advanced Components Laboratory at the Xerox Corporation
expressed the following industrial point of view: 'It is evident that neither [Kodak nor Xerox] is
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well served by the elimination of two technology-related [graduate] departments [chemical
engineering and mathematics]. To stay ahead of the very significant competition from Japan and
elsewhere, [Kodak] will need all the quality engineering talent it can find. The availability of a
quality university in Rochester enhances our ability to attract the very best people to our
company. If graduate mathematics is eliminated, I really don't see how UR can support first-rate
programs in the sciences and in engineering, and I fear that all of these will decline”.

Professor Sir Michael Atiyah, director of the Newton Institute in Cambridge, England; also the
past president of the Royal Society wrote: 'Increasingly the complex problems that scientists now
face require more sophisticated mathematical understanding. The advent of more powerful
computers has in no way decreased the fundamental relevance of mathematics. I can illustrate the
scope of mathematical interaction with other fields by listing just a few of the inter-disciplinary
programmes that we have run at the Newton Institute in the past few years: computer vision,
epidemics, geometry and physics, cryptology, financial mathematics, and meteorology".

Edward Dougherty, editor of the Joumal of Electronic Imaging, wrote: " While at first this
might appear to most people as simply one major research university deciding to restructure itself
into a not-so-major university, for those of us in the imaging community there is much more at
stake. Because it is home to both Kodak and Xerox, Rochester is one of the major imaging .
centers in the world, and therefore the future of imaging is closely tied to significant imaging
events in Rochester. Suspension of graduate research and teaching in two key foundational
imaging disciplines is not insignificant. Chemical engineering plays a role in imaging materials,
toners, and numerous other staples of digital imaging. The case for mathematics is even more
compelling when it comes to digital imaging. Simply put, there is no scientific phenomenology
without mathematics. The kind of mathematics graduate courses necessary for contemporary
research in image processing might simply cease to exist in the city of Kodak and Xerox".

Marvin L. Goldberger, dean of the Division of Natural Sciences in the University of California
at San Diego wrote: "Not only is mathematics an exciting and vital intellectual endeavour, but
from a number of standpoints, plays an exceptional educational role at both the undergraduate
and graduate levels. Advanced mathematics is essential in all areas of applied science;
economics; technological -risk analysis; to an increasing extent in fundamental and applied
biology (e.g., drug design); in national security issues involving communication, cryptanalysis,
satellite reconnaissance--the list is endless, but one more example is particularly relevant: in
recent years topology has played a central role in elementary particle physics where string theory
is a candidate for "Theory of Everything." This is another case of the remarkable and mysterious
relationship between mathematics and the physical world. Topology is one of the strengths of the
Rochester Mathematics Department”.

These public reactions illustrate the ever-expanding interrelationship between mathematics
and other disciplines, today and in the immediate future.



5. Examples of Key fields where Mathematics is
emerging vital

Friedman, A., 1998, presented three examples of key fields in science and technology to the
1998 Berlin International Congress of Mathematicians. The examples are from the disciplines of
materials sciences, the life sciences, and digital technology. Also recently, Hu, J.J and Wang, H.
2001, presented to a conference a brief outline of a perspective from the USA army research
office on trends in army funding for mathematics research. Below are summaries of the four
examples:

5.1 Mathematics in Materials Scierces

Materials sciences is concerned with the synthesis and manufacture of new materials, the
modification of materials, the understanding and prediction of material properties, and the
evolution and control of these properties over a time period. Until recently, materials science was
primarily an empirical study in metallurgy, ceramics, and plastics. Today it is a vast growing
body of knowledge based on physical sciences, engineering, and mathematics.

For example, mathematical models are emerging quite reliable in the synthesis and
manufacture of polymers. Some of these models are based on statistics or statistical mechanics
and others are based on a diffusion equation in finite or infinite dimensional spaces. Simpler but
more phenomenological models of polymers are based on Continuum Mechanics with added
terms to account for ‘memory.” Stability and singularity of solutions are important issues for
materials scientists. The mathematics is still lacking even for these simpler models.

Another example is the study of composites. Motor companies, for example, are working with
composites of aluminium and silicon-carbon grains, which provide lightweight alternative to
steel. Fluid with magnetic particles or electrically charged particles will enhance the effects of
brake fluid and shock absorbers in the car. Over the last decade, mathematicians have developed
new tools in functional analysis, PDE, and numerical analysis, by which they have been able to
estimate or compute the effective properties of composites. But the list of new composites is ever
increasing and new materials are constantly being developed. These will continue to need
mathematical input.

Another example is the study of the formation of cracks in materials. When a uniform elastic
body is subjected to high pressure, cracks will form. Where and how the cracks initiate, how they
evolve, and when they branch out into several cracks are questions that are still being researched.

5.2 Mathematics in Biology

Mathematical models are also emerging in the biological and medical sciences. For example
in physiology, consider the kidney. One million tiny tubes around the kidney, called nephrons,
have the task of absorbing salt from the blood into the kidney. They do it through contact with
blood vessels by a transport process in which osmotic pressure and filiration play a role.
Biologists have identified the body tissues and substances, which are involved in this process, but
the precise rules of the process are only barely understood. A simple mathematical model of the
renal process, shed some light on the formation of urine and on decisions made by the kidney on
whether, for example, to excrete a large volume of diluted urine or a small volume of



concentrated urine. A more complete model may include PDE, stochastic equations, fluid
dynamics, elasticity theory, filtering theory, and control theory, and perhaps other tools.

Other topics in physiology where recent mathematical studies have already made some
progress include heart dynamics, calcium dynamics, the auditory process, cell adhesion and
motility (vital for physiological processes such as inflammation and wound healing) and bio-
fluids. Other areas where mathematics is poised to make important progress include the growth
process in general and embryology in particular, cell signalling, immunology, emerging and re-
emerging infectious diseases, and ecological issues such as global phenomena in vegetation,
modelling animal grouping and the human brain.

5.3 Mathematics in Digital Technology

The mathematics of multimedia encompasses a wide range of research areas, which include
computer vision, image processing, speech recognition and language understanding, computer
aided design, and new modes of networking. The mathematical tools in multimedia may incuide
stochastic processes, Markov fields, statistical patterns, decision theory, PDE, numerical analysis,
graph theory, graphic algorithms, image analysis and wavelets, and many others. Computer aided
design is becoming a powerful tool in many industries. This technology is a potential area for
research mathematicians. The future of the World Wide Web (www) will depend on the
development of many new mathematical ideas and algorithms, and mathematicians will have to
develop ever more secure cryptographic schemes and thus new developments from number
theory, discrete mathematics, algebraic geometry, and dynamical systems, as well as other fields.

5.4 Mathematics in the Army

Recent trends in mathematics research in the USA Army have been influenced by lessons
learnt during combat in Bosnia. The USA army could not bring heavy tanks in time and
helicopters were not used to avoid casualty. Also there is need for lighter systems with same or
improved requirement as before. Breakthroughs are urgently needed and mathematics research is
being funded with a hope to get the urgently needed systems. These future automated systems are
complex and nonlinear, they will likely be multiple units, small in size, light in weight, very
efficient in energy utilisation and extremely fast in speed and will likely be self organised and self
coordinated to perform special tasks.

Research areas are many and exciting. They include: (i) Mathematics for materials (Materials
by design - Optimisation on microstructures; Energy Source - compact power, Energy efficiency;
Nonlinear Dynamics and Optimal Control). (i) Security issues (needs in critical infrastructure
protection, mathematics for Information and Communication, Mathematics for sensors, i.e.
information/ data mining and fusion, information on the move i.e. mobile communication as well
as network security and protection). (iii) Demands in software reliability where mathematics is
needed for computer language, architecture, etc. (iv) Requirements for automated decision
making (probability, stochastic analysis, mathematics of sensing, pattern analysis, and spectral
analysis) and (v) Future systems (lighter vehicles, smaller satellites, ICBM Interceptors, Hit
before being Hit, secured wireless communication systems, super efficient energy/ power sources,
modelling and simulations, robotics and automation.
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During the last 50 years, developments in mathematics, in computing and communication
technologies have made it possible for most of the breath taking discoveries in basic sciences, for
the tremendous innovations and inventions in engineering sciences and technology and for the
great achievements and breakthroughs in economics and life sciences. These have led to the
emergency of many new areas of mathematics and enabled areas that were dormant to explode.
Now every branch of mathematics has a potential for applicability in other fields of mathematics
and other disciplines. All these, have posed a big challenge on the mathematics curricula at all
levels of the education systems, teacher preparation and pedagogy. The 21" Century mathematics
thinking is to further strengthen efforts to bridge the division lines within mathematics, to open up
more for other disciplines and to foster the line of inter-discipline research.
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ABSTRACT

In the United States, African Americans, Latinos, and Native Americans have lower success rates and
higher drop-out rates in mathematics than other racial or ethnic groups. Given that quantitative competency
serves increasingly as a vehicle for economic enfranchisement, these differential success rates make
mathematics achievement a civil rights issue. Failure and dropouts start early. Moreover, “algebra” is
becoming a major stumbling block: many states require students to pass algebra tests in order to graduate
high school. This social/mathematical problem is becoming increasingly urgent.

This paper describes the American context and suggests its relevance world-wide. It then explores the
following issue. Suppose one wants to do classroomrbased research on Algebra for All: one will observe
what takes place in middle school mathematics classrooms where there are diverse populations of students.
What kinds of data should one gather in order to determine which practices support the learning of
mathematics by diverse groups of students and how they work? What theoretical frame will provide the
best purchase on these issues?

Issues addressed include: whether mathematics is “culture -free” and what the implications for
instruction might be, even if it is; the institutional support necessary for high quality instruction; the
differential treatment of student groups; pedagogical practices that enfranchise a wide range of students; the
roles of language and discourse in learning and classroom communities; individual agency; and what it
means to engage meaningfully with mathematics. The challenge is to conduct classroom research that
helps to explain, at a level of mechanism, how classroom interactions can be structured to help students
who vary widely in terms of cultural backgrounds and prior mathematical success to all learn some very
solid mathematics.
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First.
You have to understand the problem.
- George Pélya, How to Solve It

Introduction

This paper differs from those I am accustomed to writing in one fundamental way. Typically,
researchers spend a fair amount of time working on a problem. Then, after significant progress
has been made, they write up the results. The purpose of writing such a paper is to share
understandings with others. I will do some of that here. But my goal is also to problematize a
research arena — to grapple with the question of how one can productively study classroom
attempts to help middle school students with widely divergent cultural and socio-economic
backgrounds learn the mathematics that leads to and includes the study of algebra.

Here is why the topic matters. Issues of “algebra for all” are absolutely central in the current
America context. In the United States, poor children and under-represented minorities (African
Americans, Native Americans, and Latinos) tend to earn lower grades and to stop taking
mathematics courses much earlier than others; access to and treatment in mathematics classes
also differs by gender. Broadly speaking, a lack of mathematical competence and credentials
constitutes a barrier to full participation in the economic mainstream. Hence differential
participation and success rates in mathematics become an issue of social justice. Moreover, the
stakes are about to be raised. California and other states have instituted standardized examinations
as a prerequisite for high school graduation. The mathematical content focus of the examinations
is on algebra. Students who do not succeed at learning algebra will be denied a high school
diploma - and thus seriously marginalized.

A team of researchers from three universities (The University of Wisconsin at Madison, the
University of California at Berkeley, and the University of California at Los Angeles) has
received funding from the U. S. National Science Foundation to address these issues. Our project,
“Diversity in Mathematics Education” (DiME), covers a lot of territory. Project goals include
preparing a new generation of researchers to work on issues of diversity and mathematics
education, working in partnership with bcal school districts to create enhanced models of teacher
preparation and professional development, and creating a set of resources that can be used by
teachers and school districts to address these issues. Central to such resources is developing a
deep sense of what happens in classrooms as students grapple with the ideas of algebra.

There is always uncertainty in research; that is the nature of the process. As an established
researcher, I have of course developed my own modus operandi and a substantial level of comfort
for dealing with uncertainty. Typically I approach a problem with some sense of what is likely to
be important, in both theoretical and pragmatic terms. I identify phenomena of interest, gather
relevant data (which might include videotapes and various artifacts), labor over the data until they
begin to make sense, draw some tentative conclusions, and look for more data or perspectives that
will yield triangulation. The results of that work may be some or all of the following: theory
refinement, methods development, or a deeper understanding of a particular problem. (For me,
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problems tend to be of the type “how does something work™; answers are usually at a detailed
level, describing the way things fit together.) I am accustomed to starting with rough ideas of
problem, theory, and method — with some notions of what things are important and what will help
me make sense of them — and then living with the phenomena until a reasonably clear picture
emerges. Indeed, much of the pleasure of being a researcher is in figuring out how to turn one’s
intuitions into new methods, perspectives, and findings. When my intuitions feel solid, they often
pay off — not necessarily in the ways I expect, but often in ways that are close.

As [ begin this project, I do not feel comfortably equipped to address classroom issues at the
heart of DIME’s “diversity and algebra ' agenda. Despite having spent many years of thinking
about issues of mathematical thinking, teaching and learning; despite having spent one morning
every week in local public school mathematics classrooms for the past decade; and despite having
read widely and thought hard about issues of “mathematics for all,” I am not at all confident that I
have an appropriate framing of the issues or that the methods I know are appropriate for grappling
with them.? This paper represents an attempt to think through some of those issues — to lay out
some of what is known and seems to be relevant, and to see if I can elaborate some of the
conceptual and methodological problems that need to be confronted.

The paper proceeds as follows. In the next section I start with a bit of international context, to
show the relevance of the issues discussed here to non-American readers. Then I focus on the
American context, providing a bit of historical background — how high school mathematics
moved from a subject to be studied only by the elite to a subject to be studied by all. I proceed to
discuss plausible goals for mathematics instruction, and the reason that learning a solid core of
mathematics is an important and plausible goal for all students. This is followed by a brief
discussion of demographic data. These data on the mathematical performance of diverse groups
indicate clearly that in the United States, mathematics education is an issue of social justice.

Having established context for DiME’s agenda, I move on to review some of what is known
about making mathematics accessible to a wide range of students. That section of the paper is
where I try to untangle the issue of classroom research on algebra for all. As I work through
various dimensions of what is known, I point to issues that still strike me as problematic.

Before moving to my announced agenda in the next section, I want to conclude this
introductory section by posing and reflecting on some questions about the nature of mathematics
and mathematics instruction. These questions have provoked me, through the years, to think
about issues of diversity and mathematics. I begin with a question that haunted me for a long
time as a mathematician, then move to ones concerned with pedagogy and research.

»  Isn’t mathematics “culture-free” or “culture-independent?”

At international mathematics conferences, for example, it’s astounding how people who have
never met each other and may share only a few words in a common language can communicate

! In what follows I shall say a fair amount about diversity and rather little tbout algebra. That is because
issues concerning algebra are somewhat more straightforward, and do not cry for elaboration here: see, e.g.,
NCTM’s (2000) Principles and Standards and the U.C. ACCORD Mathematics working group’s (2000)
report Pathways to algebra for all of California’s children.

This sense of discomfort is, of course, intimately tied up with my sense of what counts as understanding
or explanation. My goal as a researcher is to understand how and why things work, so I'm not satisfied
personally until I have a sense of how things fit together.
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meaningfully about deep mathematical ideas. While it may or may not be the case that “a rose is a
rose is a rose,” there is no doubt that from the typical mathematician’s point of view aBanach
space is a Banach space is a Banach space: once the definition is made the properties are
established, and anyone who plays by the rules can determine those properties. At a more
elementary level, a square is a square is a square: once one says that a quadrilateral in the
Euclidean plane is a square, then (for example) its diagonills must be perpendicular and must
bisect each other. The point from the mathematician’s perspective is that the properties follow
from the definition, no matter who does the proving. At an even more elementary level, it doesn’t
matter who counts a finite set of objects, or what culture that person comes from- the answer will
always be the same.
An affirmative answer to the first question leads to a corollary question:

e If mathematics is culture-free, then how does it make sense to speak of “teaching
mathematics to students of different cultures”? That is, if mathematics is culture-free, shouldn’t
mathematical pedagogy be culture-free?

How one answers this question depends, of course, on how one conceptualizes teaching and
learning.

One view, which predominated when I began to teach mathematics and is still, 1 suspect,
rather common at the university and perhaps secondary levels, is that the responsibility of the
mathematics teacher is to present lucid explanations of the mathematical ideas at hand. In this
view, the truly competent teacher is the one who has three of four (maybe more) different ways of
explaining a topic or concept, so that students who don’t “get” the first may find the second more
accessible, or perhaps the third, or fourth.

It is important to recognize possible concomitants of this view. When the teacher has
presented mathematically clear explanations at the right level, he or she has met his or her
pedagogical obligations. Thus this approach creates a clear division of responsibilities. The
faculty’s job is to make the material accessible to students; the students’ job is to learn that which
has been clearly presented. In consequence, this perspective allows the faculty to abdicate
responsibility for some student learning: if the.presentation has been clear, then it’s the student’s
fault if he or she didn’t learn the material. It also supports “deficit” models of instruction, with the
assumption that students from particular backgrounds have particular deficits. (Students for
whom English was a second language might, for example, be taken out of mathematics classes
until their English was deemed adequate for full participation in the mathematics classes. The net
result was that those students got further behind in mathematics.)

When it is presented in such stark terms, the “lucid explanation™ perspective described in the
previous paragraphs might well be rejected by a fair percentage of today’s teachers. It harks back
to the “old days,” when teachers lectured and students took notes. In the United States today’s
mathematics classes are much more interactive; students engage in a wide range of mathematical
activities. A more contemporary view might be that the responsibility of the mathematics teacher
is to provide students with a range of activities (possibly including lecture, individual or small
group work, whole class activities, the use of manipulative materials, and more) that allow
students to engage with the mathematical ideas at hand, and to learn as a result.
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This does indeed sound contemporary. The point to recognize, however, is that everything that
I said about the “lucid explanations” perspective applies to this more contemporary view as well.
Here the master teacher might be viewed as the teacher with a large bag of tricks, including a
large range of activities that support multiple approaches to the mathematics. This certainly
covers more territory than the first perspective. But, like the other, it creates a clear division of
responsibilities. The teacher now has a larger set of responsibilities — the pedagogical tool kit is
expected to be much larger. But here too, faculty are given a warrant for abdicating responsibility
for some student learning: if classroom activities have been field tested and are thought to be of
high quality, then it’s the students’ fault if they don’t leam the material.

A third view is that effective teaching (defined as “things the teacher does that lead to
successful learning”) is teaching that helps students to negotiate the terrain between what they
bring to the learning environment and what one wants them to learn. Of necessity, this kind of
teaching calls for understanding and building upon what the students bring — predispositions and
understandings, habits of mind, patterns of engagement, patterns of communication (including
norms of social interaction and linguistic patterns), and more. It should be obvious that many of
these are shaped by the student’s experiences outside classroom boundaries — that is, they are
shaped culturally. From this perspective, then, effective teaching must be responsive to what the
students bring with them to the classroom — in Ladson-Billing’s (1994) words, pedagogy must be
“culturally responsive.”

If one accepts the notion that one has to “meet students where they are,” the next set of
questions to address concerns how to understand what the students bring to the classroom, and
how to foster productive interactions between students and mathematics. As will be elaborated
below, there is reason for optimism about what can be achieved. Indeed, there are some
suggestions of the kinds of conditions that might, in concert, sustain positive change. These will
be reviewed, albeit briefly. But even given these, I find myself confronted with a series of
questions about the kind of research I would like to produce.

The question I would like to address is this:

+  Suppose one wants to do classroom-based research — that is, one’s work will be grounded
in observations of what takes place in middle school mathematics classrooms in which there are
diverse populations of students. What kinds of data should one gather in order to determine which
practices support the leamning of mathematics by diverse goups of students, which do not, and
how they work? What theoretical frame will provide the best purchase on these issues?

As simple as these questions may seem, the answers are anything but simple.

Context

Why this might matter to people outside the United States.

The United States has often gone its own way in curricular matters. For example, the
traditional U. S. mathematics curriculum consists of a year’s study of elementary algebra in g"
grade, Euclidean geometry in 10™ grade, and a return to more advanced algebra and trigonometry
in 11" grade. In the traditional curriculum, geometric problems are not dealt with in the algebra
courses, and vice-versa; applications are few and far between. This course configuration, along
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with the nature of topic coverage in the U.S. (“a mile wide and an inch deep”), are somewhat
anomalous internationally (see, e.g., Schmidt, McKnight, and Raizen, 1997). Given the atypical
nature of the curriculum, and the somewhat atypical history of race relations in American society,
why might the study of issues of diversity and mathematics education in the U.S. be relevant
anywhere else?

I shall answer by assertion — but someone else’s rather than mine. In a paper written for the
International Commission on Mathematics Instruction, Robyn Zevenbergen writes the following:

The international phenomenon of expansion of the higher education sector has resulted in
greater diversity in the intake of students. No longer is higher education the domain of the elite,
but now more students can access it than in any previous times. . . . Students who, in earlier times
would not have gained access to (or even considered enrolling in) tertiary mathematics, are now
coming to classes. These students have very different needs and expectations of the ir study and
are likely to encounter difficulties. .. (Zevenbergen, 2001, p. 13).

In short, the democratization of higher education worldwide will result in more diverse groups
of students in tertiary mathematics classes, and a concomitant set of pedagogical issues. And such
issues will not appear for the first time at the post-secondary level; they will appear in the
mathematics “pipeline,” as students are being prepared for the further study of mathematics.

100 years of American curricular history in a few paragraphs

The 20" century can be seen as a century of mathematical “democratization” in the United
States. As the century began, mathematics was the province of the elite. As it ended, arguments
were being made that all citizens need to be quantitatively literate in order to participate fully in
the American democracy.

In 1890 only 6.7% of the 14 year-olds in the United States attended high school, and only
3.5% of the 17 year-olds graduated (Stanic, 1987). The purpose of schooling was to provide the
vast majority of students with workplace skills and little else. Schooling for the masses focused
on what were called the three R’s: Readin’, Ritin’, and Rithmetic.” Education for the elite was
reserved for high school and beyond.

Over the course of the 20" century there were continuing pressures for additional schooling.
By mid-century almost three-fourths of the children of age 14 to 17 attended high school, and
49% of the 17 year-olds graduated. (Stanic, 1987, p. 150). These enrollment changes resulted in
the pressures identified above by Zevenbergen: courses once designed for a select group of
students were being studied by increasing numbers of students. These demographic trends
continued through the end of the century. A part of the American ethos is that education is a
pathway to social and financial advancement: the “G.I. Bill,” for example, provided soldiers
returning from World War II with incentives to take courses at the post-secondary level. General
social goals included high school graduation and access to further study for all students. By the
end of the century, more than half of the high school graduates in the U.S. had enrolled in some
form of post-secondary education.

Outside the classroom the world had changed in significant ways. Inside the classroom,
however, the mathematics curriculum was largely unchanged: for most students grades 1-8
consisted of the study of arithmetic. In grade 9 they studied algebra. Half the students stopped
taking mathematics at that point, and half went on to geometry in grade 10. Half the students



stopped taking mathematics at that point, and half went on to “advanced algebra/trigonometry” in
grade 11. The attrition rate from the mathematics pipeline continued at 50% per year as students

- proceeded through pre-calculus and then calculus, either in their senior year in high school or in
their first year of post-secondary education.

1989 and beyond: New curricular goals

In 1989 the U. S. National Council of Teachers of Mathematics issued the Curriculum and
Evaluation Standards for School Mathematics, a volume that proposed significant changes in
mathematics teaching. This was followed in 1991 by the Professional Standards for Teaching
Mathematics and in 1995 by the Assessment Standards for School Mathematics. 1 shall refer to
these three volumes collectively as the Standards, while noting that the first volume, published in
1989, is the one that had the greatest influence. Part of the reason for creation of the Standards
and the changes they suggested was dissatisfaction with the then-current curriculum, including
the huge attrition rate from the mathematics pipeline described in the previous paragraph. But
equally important was a reconceptualization of the underlying goals and purposes of mathematics
instruction. The curriculum had been inherited from a time when mass education was for limited
purposes of general literacy, and advanced education was for the elite. The Standards specified
new instructional goals for all students: “New societal goals for education include (1)
mathematically literate workers, (2) lifelong learning, (3) opportunity for all, and (4) an informed
electorate” (NCTM, 1989, p. 3).

The publication of the Standards catalyzed a large (and not uncontroversial) change in
mathematics instruction, which ame to be known as “reform.” Desired reforms (which were
grounded in contemporary research, but had not been empirically tested on a large scale) included
the following:

"We need to shift —

» toward classrooms as mathematical communities—away from classrooms as simply a
collection of individuals;

» toward logic and mathematical evidence as verification—away from teacher as the sole
authority for right answers;

»  toward mathematical reasoning—away from merely memorizing procedures;

» toward conjecturing, inventing, and problem solving—away from an emphasis on
mechanistic answer-finding;

+ toward connecting mathematics, its ideas, and its applications—away from treating
mathematics as a body of isolated concepts and procedures.” (NCTM, 1991, p. 3)

The Standards emphasized mathematical processes as well as content. Specifically, there was
a focus at all grade levels on problem solving; on reasoning; on connections within mathematics
and from mathematics to ideas outside mathematics; and on communicating using mathematical
ideas. In the years from 1989 to the present, there has been some slow implementation of reform,
along with a fair amount of experimentation’. After the publication of the Standards, some groups
(sometimes with funding from the U. S. National Science Foundation) began the development of

* The Standards did not specify curricula, but rather a set of learning goals for students. Thus it was
possible to develop very different approaches to instruction that were “in the spirit of the standards.”

167



curricula aligned with (their authors’ interpretation of) its goals. These curricula became available
in the mid-to-late 1990s. Reliable data on their use, discussed later in this section, is just
beginning to accumulate.

Toward the end of the 20" century, NCTM realized that it needed to re-examine the contents
of the Standards. Part of the reason for this reconsideration was political: the original document
had been interpreted in so many different ways that some clarification was in order. More
importantly, a lot had been learned in the years since the Standards had been issued. Ideas that
had been speculative (that is, research-based but not extensively field-tested) had since been
examined in practice, and methods, ideas, and materials had been significantly refined over the
ensuing decade. Equally important, there had been important changes in the world outside of
school. When the Standards were written, its authors took a bold stance, arguing that all high
school students should have access to (and use) graphing calculators. Just a few years later,
computers and the World Wide Web became accessible resources. Numbers no longer had to be
“nice’”; machines could do number crunching. Large data sets were available on the web, meaning
that students didn’t have to work with “faked” data. Graphing packages were available, as were
various modeling tools. With such tools and data available, the nature of the mathematics that
could be done in classrooms changed considerably. And, the threshold of mathematical
competence for full participation in America’s participatory democracy kept rising.

All of these reasons led NCTM to issue Principles and Standards for School Mathematicsin
April 2000. (Full disclosure;: I was a member of NCTM’s Commission on the Future of the
Standards, which decided that a new vision was needed, and a member of the writing team that
produced Principles and Standards.) Principles and Standards represents an evolutionary change
from its antecedent, n that it is informed by a decade’s experience working toward the content
and process goals of the Standards. But there are ways in which Principles and Standards is itself
revolutionary. Just as the original Standards represented a vision statement — a set of goals for the
future — so do Principles and Standards. Perhaps one of the strongest positions in the document is
that all students should study a basic core set of mathematics courses each and every year that
they are enrolled in secondary school. The expectation is that this common core will prepare all
students for quantitatively literate citizenship, entry into the workplace upon graduation, and the
pursuit of mathematics at the university level if they desire.

This expectation flies in the face of 100 years’ curricular tradition in the United States. It is
also a bold (and some would say impossible) cry for social justice, given the data that I shall soon
describe.

Part of the rationale for the recommendation is as follows. There are basically two audiences
to consider: those who (for the time being at least) see themselves as having no mathematical
needs beyond those required for a good job and literate citizenship, and those who will pursue the
further study of mathematics. A good case can be made that the needs of these two groups are
converging. The threshold for quantitative literacy has been rising. Today one expects people to
be able to model and understand realworld phenomena using quantitative tools, to analyze and
understand (and even make) complex logical arguments; to make decisions about social issues; to
use technological tools appropriately when necessary; and to communicate effectively orally and
in writing. Such skills are required for decision-making in one’s personal life {e.g., when
choosing mortgages or telephone plans), for interpreting information in newspapers (which is
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increasingly given in graphical or tabular form), for making informed choices regarding public
policy (just how dangerous is a pesticide suspected of causing dmage, or living near power
lines?), and on the job (e.g., making predictions using spreadsheets and other software, defending
one’s choices or line of argument in a memo).

Many of these skills were given scant attention in the traditional curriculum. The y can be seen
not only as part of the foundation for quantitatively literate citizenship, but also as part of the
foundation for mathematical and scientific careers. Let me describe my own background. My
Ph.D. is in mathematics. Through secondary school and well into my collegiate career I studied
no statistics and learned nothing about analyzing data. (I first studied statistics when I had to
teach it.) I never did any “real world” modeling, or had practice at representing real world
phenomena in mathematical terms. With the exception of a rather stilted form of writing up
proofs in 10" grade geometry, I was not asked to make mathematical arguments of any sort until I
was asked to reproduce proofs in calculus, then write them in a linear algebra course. I was rarely
if ever asked to communicate using the language of mathematics; more often than not, producing
a string of symbols and the right number at the end of my computations sufficed to get full credit
for working a problem. In sum, my preparation as a mathematiciar-to-be would have been far
richer had I been asked to develop the skills that are now relevant for all citizens. A common core
can serve both groups (with the mathematically inclined studying additional mathematics if they
wish.

That being the goal, what is the reality?

The data speak: Diversity and equity must be major concerns with regard to
mathematics education.

As a mathematician, I value mathematics for myriad reasons: its beauty, its clarity and
coherence, its power as a way of thinking, its role as the “language of science,” its contributions
to our intellectual heritage, and more. As an educator, 1 realize that access to high quality
mathematics instruction — the kind of instruction that will enable students to develop
mathematical competency — is a matter of social justice.

Everybody Counts, a 1989 report from the U. S. National Research Council, made the case this

way:
More than any other subject, mathematics filters students out of programs leading to scientific
and professional careers. . . . Mathematics is the worst curricular villain in driving students to

failure in school. When mathematics acts as a filter, it not only filters students out of careers, but
frequently out of school itself. . ..

Low expectations and limited opportunity to leamn have helped drive dropout rates among
Blacks and Hispanics much higher -- unacceptably high for a society committed to equality of
opportunity. It is vitally important for society that all citizens benefit equally from high quality
mathematics education. (National Research Council, 1989, p. 7)

This last statement situates mathematics instruction firmly as an equity issue. The “gender
gap” in mathematics performance and the role of mathematics as a “critical filter” for women
have been documented for some time (see, e.g., Sells, 1975, 1978). Similar data exist for under-
represented minorities (specifically African Americans, Latinos, and Native Americans). In 1990,

109



the U. S. National Research Council published A Challenge of Numbers, which synthesized a
great deal of data regarding the mathematical trajectories of various sub-populations of the United
States. Here in tabular form are data regarding the percentage of students enrolled at various
levels in mathematics in the late 1980s.

"Grade | 12" Grade BS.inmath | M.S.in Math | Ph.D. in Math
Asians 2 2 6 3 8
White Male 40 41 45 55 70
White Fernale 39 39 40 33 I7
Black 12 11
Hispanic 7 6

Percentage of students at various points in the mathematics pipeline.
Data drawn from Figure 4.2 of NRC, 1990.
(Rounding results in some column sums not being 109)

Reading each row from left to right provides documentation of increasing or decreasing
participation in mathematics, from eighth grade on. Since schooling is essentially universal at
eighth grade, the first column represents the approximate proportion of each demographic group
in the U.S. population. One sees a substantial percentage increase in mathematics participation
among Asians and White males, and a substantial decrease among White females, Blacks, and
Hispanics. These data represent just the tip of the iceberg, for they fail to capture the
“performance gap” between various demographics groups (in terms of scores on various
standardized exams) at all levels of the educational system. A synthesis of current performance
and demographic data has just been published in the Educational Researcher by Jaekyung Lee.
Lee’s (2002) findings are not encouraging. They suggest that the progress toward narrowing
racial and ethnic achievement gaps in the 1970s and 1980s (as reflected by scores on a range of
standardized tests) may have slowed or reversed in the 1990s. In what follows, NAEP refers to
the U.S. National Assessment of Educational Progress, a federally funded national sampling of
student performance in core subject areas. The SAT is a “high stakes™ examination taken by a
large percentage of students applying for post-secondary study. Among Lee’s findings were the
following.

*Black-White average score gaps on the NAEP mathematics tests tended to diminish from
1971 through 1990, but then stabilized or increased through 1999. In 1999 these differences
were between 25 and 35 points at all grade levels. (NAEP defines five “performance levels”
of mathematical proficiency corresponding to of 150, 200, 250, 300, and 350. The average
differences of 25 points represent a very large and significant difference.)

. Hispanic-White average score gaps on the NAEP mathematics tests showed a
similar trend, in that they tended to diminish from 1971 through 1990, but then stabilized or
increased through 1999. In 1999 these differences were between 20 and 30 points at all grade
levels.




. Black-White average score gaps on the SAT mathematics exams followed a
similar pattern over the period from 1977 © 2000, with a steady decrease in the score gap
from 123 in 1977 to a low of 91 in 1990, but then very slow increases to a difference of 94 in
2000. (SAT scores are on a 200-800 scale, with a mean of 500 and a standard deviation of
about 110. These are very large and significant differences.)

. Hispanic-White gap trends on the SAT mathematics exams were similar,
although the magnitude of the gaps has been a bit smaller (as it was on NAEP). There was a
steady decrease in the average score gap from 80 points 1978 to a low of 57 points in 1989,
but then a steady increases in differences from then on, to an average difference of 69 points
in 2000. These too are very large and significant differences, with the trend moving away
from equality.

Lee also offers comparative data on trends of selected measures of socioeconomic,
cultural, and educational conditions among Blacks, Whites, and Hispanics from 1970 through
1998. These data offer few reasons for cheer, other than the fact that, generally speaking,
things do tend to be better now than they were thirty years ago. Here are some of the relevant
data. Data are given in terms of ratios of proportions of the populations being compared. In
1998,

. The likelihood of a Black family living in poverty was 2.5 times that of a White
family; the likelihood of a Hispanic family living in poverty was 2.3 times that of a White
family.

. The likelihood of a Black family being headed by a single parent was 2.5 times

that of a White family; the likelihood of a Hispanic family being headed by a single parent
was 1.3 times that of a White family.

. The high school dropout rate for Blacks was 1.8 times that for Whites, and the
high school dropout rate for Hispanics was 3.8 times that for Whites.

These statistics are troubling — and, d course, data summaries capture the realities in rather
dry ways. Kozol's (1992) Savage Inequalities brings them to life in dramatic (and much more
disturbing) fashion.

It should be noted that while the data portray some of the harmful realities that need to be
addressed at both the social and school levels, they do not at all paint a clear picture of precisely
how they are related. Indeed, some trends such as high school dropout rates differed substantially
for Blacks and Hispanics, while many of the trends regarding socioeconomic and cultural
conditions looked remarkably similar. Lee summarizes his presentation of the data with the
following comment; “In brief, this analysis of schooling conditions and practices shows that none
of the conventional indicators examined above fully accounts for the bifurcated racial and ethnic
achievement gaps trends that I have described” (Lee, 2002, p. 10).

Despite the absence of a clear causal (or in some cases, correlational) mechanism, aspects of
the problem are clear. There are huge performance gaps in mathematics. There is differential
access to mathematical resources, with poor and underrepresented minority students less likely
than others to have access to high quality instruction. (See Kozol, 1992, for graphic descriptions
of educational inequities in the United States; see Secada, 1992, for a broad characterization of
racial, ethnic, and class issues in mathematics education.) The legal term for guaranteed access to



educational opportunities is *‘opportunity to learn (OTL).” OTL has become a major civil rights
issue in the U.S.

Generally speaking, a lack of credentials or poor performance in mathematics is likely to lead
to decreased opportunities. Assuring high quality instruction, and moving toward a high level of
performance for all students, is an issue of social justice.

This point has been highlighted by Robert Moses, civil rights leader and founder of the
Algebra Project (a project intended to help provide disenfranchised minority students access to
mathematics). Moses notes that algebra has come to take on a powerful filtering role in school
curricula; those who will “make it” do so by passing algebra, while the rest will have severely
limited opportunities. In Radical equations: Math literacy and civil rights, Moses writes:

Today ... the most urgent social issue affecting poor people and people of color is
economic access. In today’s world, economic access and full citizenship depend crucially
on math and science literacy. I believe that the absence of math literacy in urban and rural
communities throughout this country is an issue as urgent as the lack of Black voters in
Mississippi was in 1961. (Moses, 2001, p. 5)

Focusing in on the classroom: Some of what we know

Let me begin this section by reiterating two points. The first is my emphasis on exarnining
classroom instruction — albeit with the recognition that factors outside the classroom walls
obviously play a powerful role shaping what can and does take place inside them. The second is
my notion of teaching as a set of actions that help students negotiate the terrain between what
they bring to the learning environment and what one wants them to learn. The question for me in
thinking about focusing on the classroom is deceptively simple: What can we know, and how can
we know it?

There is a clear policy context, which I shall summarize in brief. And there are suggestions
(both in terms of findings and methods) from research on gender; on language; on attempts to
teach “mathematics for all”’; on individual agency; on classroom community; and in fine-grained
analyses of learning.

Policy Assumptions

As noted above, there have been some dramatic changes in American mathematics curricula
since the issuance of the NCTM Standards in 1989. These changes have not been
uncontroversial. Curricula constructed in line with the Standards tended to emphasis *“process” to
a significant degree: the first four standards at each grade level concerned problem solving,
mathematical reasoning, making connections, and communicating mathematically. There has
been a concomitant de-emphasis on practicing basic skills and on the mastery of procedural
algorithms (e.g., the procedures for long division and multiplication of multi-digit numbers). This
raised for some the concern that students would lose foundational mathematical skills, without
which they would be seriously handicapped. For some years the controversies lay primarily in the
political arena, since there were no hard data to make the case one way or another. The first
volume of Standards was published in 1989, and “standards-based” curricula were developed in
the mid-1990s. They were first implemented on a large scale in the late 1990s, and data

basd
bt
A%}



concerning their implementation have only begun to be available over the past year or two. Those
data suggest the following:

The alignment of curriculum, student assessment, and professional development (enhancing
the capacity of teachers to implement curricula as intended) is essential. When a standards -based
curriculum is implemented in a stable context and when assessment and professional
development are consistent with that curriculum, there can be significant improvements in student
learning. Those improvements include:

. scores on measures of skills that meet or exceed the scores of studerts who study
traditional (U.S.) mathematics curricula. (In other words, fears that less direct attention to
basic skills would result in an absence of those skills are not warranted.)

. tremendously enhanced performance on measures of concepts and problem
solving, in comparison with the test scores of students who study traditional curricula. (This,
of course, should come as no surprise; traditional curricula give much less attention to
concepts and problem solving than do reform curricula.)

. a significant decrease in racial “performance gaps.” In one well-documented
case, Black/White racial differences essentially vanished on measures of skills; they dropped
substantially on measures of concepts and problem solving.

Data supporting these assertions may be found in Schoenfeld (2002). These data provide a
warrant for looking at contexts where students are encouraged to engage with meaningful
mathematics — that is, with mathematics curricula consistent with NCTM’s Principles and
Standards or the earlier Standards. The data also point to the fact that such engagement is much
more likely to be successful in the right “policy surround” — one in which teachers are supported
in their efforts to make the mathematics accessible to students, both by means of assessment
policies and by professional development.

Issues of Context

Though they are not the focus of the classroom analyses 1 propose to discuss here, one must
keep in mind the variety of contextual factors that shape the opportunities made available to
students. These include differential opportunities due to unequal distribution of resources and
tracking or “curriculum differentiation.” Secada (1992) documents relationships between various
contextual factors (race, ethnicity, social class, and language) and mathematics achievement
(typically measured on standardized achievement tests); Lee (2002) updates some of these. As
noted above, Kozol (1992) portrays the stark realities that lie behind some of those data. Oakes,
Gamoran, and Page (1992) describe the effects of tracking:

“Curriculum differentiation works against the success of academically deficient
students: By the end of the year, they tend to fall even further behind. Even in the best of
cases, in which ability grouping benefited low-ability as well as high-ability students in
certain elementary school studies, high-group students tended to gain more, so that the
gaps still widened.” (Oakes, Gamoran, & Page, 1992, pp. 599-600)
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Putting aside for the time being the problematic nature of constructs such as “high ability” and
“low ability” students’, this does suggest some issues that could be examined in classrooms, e.g.,
the uses of grouping and the consequences thereof. Of particular interest to me is explanation at
the level of mechanism. Such studies exist in reading, for example: “At the elementary level, low
reading groups spend relatively more time on decoding activities, whereas more emphasis is
placed on the meanings of stories in high groups” (Oakes et al., 1992, p. 583). This serves as an
explanation of why the rich get richer, in that the more advanced students are presented more
opportunities to learn the things that all students need to learn. Similarly in high school
mathematics, teachers of “low ability” classes tended to emphasize mathematical gocedures,
while teachers of “high ability” classes gave much greater emphasis to inquiry skills, problem
solving, and the preparation for further study (Oakes et al., 1992, p. 584).

Issues of Differential Treatment

The previous section focused on differential treatment at the group level. Classroom analyses
have also focused on differential treatment at the individual level (aggregating the individual
data). Some studies with the best potential for the detailed examination of classroom practices
regarding differential treatment were gender studies, which have a tradition that goes back some
30 years. After examining patterns of classroom interactions, for example, Good, Sikes, and
Brophy (1973) concluded that “male and female students are not treated the same way™ (p. 85;
quoted in Koehler, 1990). Typical studies examined the frequency of the questions teachers asked
boys and girls, and their nature — whether questions were at high or low content levels, how often
they were focused on disciplinary issues, and how often teachers’ comments focused on
substantive content issues or superficial aspects of work such as neatness.

In early work on classroom practices, in the 1970s, achievement scores were not examined.
As a result, systematic patterns of interactions could not be related (even statistically) to
outcomes. Also, the scope of processes covered was rather narrow. Hence it is not clear what
would correlate with what (or even if the right variables had been chosen), even if outcome
measures had been used.

A next generation of studies in the late 1970s and 1980s, called differential effectiveness
studies, employed the “process/product” paradigm, which attempted to link differential teacher
and student behaviors to differential performance outcomes. Such studies rapidly revealed
unexpected complexities. First, correlational patterns were not what one might nat vely expect.
Differential pattens of engagement did not consistently produce differential scores, raising
hypotheses that some teacher behaviors might be appropriate for some students, and not others.
(In the language of the time, there might be an “aptitude-treatment interaction” that confounded
the relation between teacher actions and student outcomes.)

Leder (1992) reviews a broad spectrum of gender studies in mathematics. A jaundiced
summary of Leder’s summary might be “there are lots of interesting things to look at, but very
few if any clear-cut conclusions that one can draw.” Environmental variables listed by Leder

4 Such classifications are often made on the basis of standardized tests, which tend not to make
accommodations for linguistic skills. The use of such tests can thus lead to the classification of a
mathematically talented student who is taking the test in his or her second (or third)language as being “low
ability.”
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included school variables, teacher variables, the peer group, the wider society, and parents.
Learner-related variables included intelligence, spatial abilities, confidence, fear of success,
attributions, and persistence.

The process/product paradigm died pretty much a natural death, and for good reason. There
were two main difficulties regarding such studies. The first is that the work was correlational —
and as indicated above, the correlations did not provide much by way of insight. The second is
that outcome measures were almost all mathematically superficial. Standardized tests were
typically employed. These gave little attention to the complex processes of mathematical thinking
and learning that are now central to educational discourse. Thus, while such studies suggest
interesting things to look for in patterns of teacherstudent interactions, a new (and much more
fine-grained) perspective is required. Such a perspective would attend much more to the
mathematical richness of the interactions, and would try to link the character of the interactions
more directly to student performance.

Looking more closely at teacher practices

One lens through which one might examine teacher practices is that of “culturally relevant
pedagogy,” as described by Gloria Ladson-Billings (1994). Ladson-Billings (1997) abstracts
some principles of productive pedagogies for all students as follows:

Students treated as competent are likely to demonstrate competence.

*Providing instructional scaffolding for students allows students to move from what they
know to what they do not know.

*The major focus of the classroom must be instructional.

*Real education is about extending students’ thinking and abilities beyond what they
already know.

*Effective pedagogical practice involves in-depth knowledge of students as well as subject
matter.

Ladson-Billings goes on to note that researchers face'serious theoretical (and methodological)
challenges in trying to frame productive “next steps” in research — the job being to confront the
necessary complexity of classroom interactions and characterize it in ways that allow for building
productively on what students know. That is indeed the challenge.

It is worth noting that culturally relevant pedagogy need not be “‘culturally specific.” Some
programs, such as the Algebra Project (Moses, 2001; Moses, Kamii, Swap, & Howard, 1989) and
the Jaime Escalante Math Program (Escalante & Dirmann, 1990) are designed to address the
perceived needs of specific groups of students. Other programs, such as Cognitively Guided
Instruction, or CGI (Carey, Fennema, Carpenter, & Franke, 1995) and QUASAR (Silver, Smith,
& Nelson, 1995), or many of the standards-based curricula, were not designed for implementation
with specific populations of students. The key desideratum is that they were designed to meet
students “where they are.”

Additional factors to consider follow.

Issues of Language and Discourse
In recent years there has been a significant change in perspective regarding the mathematics
instruction of “English language leamers” and/or those students whose cultural backgrounds are
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from other than mainstream U.S. culture. Older studies tended to look upon mathematics learning
as the acquisition of vocabulary and of skills; English language learners were often thought of as
having language (and other) “deficits” and instructed narrowly in terms of vocabulary. Today it is
understood that engaging in mathematics involves a form of sense-making that far transcends the
acquisition of a technical vocabulary; also that deficit models are not a productive way to address
the educational needs of students with non-mainstream backgrounds. Echoing the comments of
Ladson-Billings summarized above, for example, Garcia and Gonzales (1995) note the following
characteristics of teachers considered successful with linguistic and cultural minority students:
high expectations for all students; a rejection of models of their students as intellectually
disadvantaged; commitment to students’ academic success; commitment to student-home
communication; and willingness to modify curriculum and instruction to meet the specific needs
of their students.

The new emphases in standards-based curricula on mathematical processes — on problem
solving, reasoning, connections, and communication — call for a much higher level of
mathematical discourse.

“Research in mathematics education documents a variety of perspectives regarding
what it means to learn mathematics. Learning mathematics can be seen as learning to
carry out procedures, develop hierarchical skills, solve mathematical problems, or
mathematize situations. Recent theoretical perspectives have focused increasingly on
mathematics learning as a process that intrinsically involves the use of language. Such
notions include descriptions of mathematics learning as sense-making (Lampert, 1990;
Schoenfeld, 1992), as participation in communities of practice (Lave & Wenger, 1991;
Brown, Collins, & Duguid, 1989), as developing socio-mathematical norms for
participating in the discourse of mathematics classrooms (Cobb, Wood, & Yackel, 1993),
and in general as learning to participate in mathematical discourse practices such as
modeling and argumentation (Brenner, 1994; Forman, McCormick, & Donato, 1998;
Greeno, 1994).” (U.C. ACCORD Mathematics working group, October 2000, p. 10).

As Brenner (1994) observes, Standards-based curricula typically call for discussing and
analyzing problem situations, choosing the relevant analytical and representational tools, solving
problems, and communicating the results. In comparison with traditional curricula, this requires
the increased use of language in the service of mathematical sense making. Hence classrooms in
which these curricula are employed run the risk of placing English language learners at risk —
unless their teachers can find ways of wking advantage of the first language resources the
students bring with them to instruction. This will call for mediating between the linguistic
resources that the students come with — typically everyday language in their first language and
some mastery of English — and the specialized use of the “mathematics register” (Halliday, 1978),
a precise technical form of expression using mathematical terms that has its own specialized
syntax and meanings (see, e.g., Khisty, 1995; Moschkovich, 1999, 2000; Pimm, 1987; Warren &
Rosebery, 1995). More generally, an argument can be made that teachers (and researchers on
teaching) need to be familiar with a range of issues pertaining to language, language
development, and language acquisition (See Fillmore and Snow, 2000). In terms of classroom
research, this will call for fine-grained analyses to see how interactions among students and



between the students and the teacher work to support or inhibit students’ meaningful engagement
with the rich conceptual aspects of mathematics.

To make this discussion concrete, let me give some examples of how an inappropriately high
linguistic threshold can impede English language leamers’ participation in mathematics and other
subjects, and paint a distorted picture of the students’ competencies. Lily Wong Fillmore has
investigated the language demands in “high stakes” contexts such as high school exit
examinations in various states. Fillmore (2002) points out that the tests examine not only subject
matter mastery, but students’ command of academic English. Here is a sample problem from the
Arizona exit exam.

If x is always positive and y is always negative, then xy is always negative. Based on
the given information, which of the following conjectures is valid?

non

A. x"y", where n is an odd natural number will always be negative.

B. x"y", where n is an even natural number, will always be negative.

n.om

C. x"y", where n and m are distinct odd natural numbers, will always be
positive.

nom

D. x"y", where n and m are distinct even natural numbers, will always be
negative.

Fillmore writes:

“What's difficult about it? Nothing, really, if you know about, can interpret and use—

o exponents and multiplying signed numbers;

o the language of logical reasoning;

¢ the structure of conditional sentences;

o technical terms such as negative, positive, natural, odd, and even for talking
about numbers.

¢ ordinary language words and phrases such as if, always, then, where, based
on, given information, the following, conjecture, distinct, and valid.” (Fillmore, 2002,

p.3)
Fillmore continues with sample questions from the tenth-grade Massachusetts Comprehensive

Assessment System (MCAS).
1. Which of the points below is not collinear with the others?
M@, -2) N(-5,6) S (9, 10y T(0,-21)

A. Nonly
B. Sonly
C. Tonly

D. They are all collinear.
2. The amplitude, frequency, and shape of an electrical signal can be displayed and
measured using

A. asignal generator.
B. a multimeter scope.
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C. anoscilloscope.
D. anodometer.
3. The Petition of Right that the English Parliament forced King Charles 1 to sign in 1628
included the principle of habeas corpus, which means that

A. only a legislative body can collect taxes in time of peace.

B. civil law cannot apply to the clergy.

C. martial law can only be applied by the head of the government.

D. no one can be imprisoned unless charged with a specific crime
within a reasonable time.

These examples are clearly problematic, if one takes seriously the idea that assessment should
help reveal “what students know and can do.” These examples, taken from formal assessments,
also highlight potential linguistic issues in the acquisition of mathematical understandings. It will
not be terribly difficult, I suspect, to find evidence of unhelpful discourse practices in
mathematics classrooms. The question is, how does one document what are likely to be
productive practices, and provide meaningful evidence of the relationship between the practices
and their impact?

Issues of Participation and Agency

Active engagement (of a mathematically appropriate and productive kind) is likely to be a
major factor contributing to students’ mathematical success. There are various ways one can look
at issues of engagement, at both the collective and individual levels. One can examine
participation structures, both whole class and small group. Are all students “invited” to participate
fully? Are there moves by teacher and/or students that enfranchise various students, or that
disenfranchise them? Analyses of this type, combined with analyses of the kinds of commerts
made by individual students, can paint a good picture of local engagement — of what students are
doing and how they engage with the material. But then there are at least three other issues that
need to be considered, if one is to have a chance of seeing the “big picture.”

First, there is the issue of linking participation and engagement to outcomes. In the past, some
of my explanatory work has been at the aggregate level. For example, I was able to argue on the
basis of classroom observations that particular practices in high school geometry classrooms led
to the development of particular student beliefs regarding the nature of the mathematical
enterprise. It is not clear to me whether the study of aggregate or individual trajectories is more
promising for linking participatory experiences with student perceptions and behavior.

Second, at what point in students’ mathematical histories is it most profitable to start looking
at interactive and engagement patterns? To give a specific example: a few weeks ago my research
group viewed a videotape of a group of students working together on an applied problem. The
interactions were nothing short of wonderful; the three students (two girls and one boy, all of
different ethnicities) all contributed in substantive ways to the solution of the problem they were
addressing. In terms of the methods discussed above, it would be straightforward to do a
discourse analysis indicating how each was enfranchised by the others, what their contributions
were, and so on. And that's essential. But looking at this tape raised more questions than it
answered. How in the world did the students learn to interact like that? How typical were the
interactions? How far back do you have to go to trace the ways these students learned to interact
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with each other, to describe the role of the teacher in shaping the group’s interactions? A
comprehensive data analysis would take a huge amount of time. What strategies are there for
targeting the “‘right” things for the “right” kinds of analysis?

Third, it must be recognized that in-class interactions are shaped in myriad ways by events
that take place outside of class. To name one essential feature of the interactions, consider the
issue of students’ mathematical agency and mathematical identities. Whether students will engage
mathematically and how they will do so is a function of how they see themselves, how they see
the instrumentality of the mathematics they are studying, and how they see themselves fitting in
with their environment (Eckert, 1989; Martin, 2000). Martin (2000), for example, describes
interviews with African Americans who felt that, now matter how well they did mathematically,
they would never be given job opportunities that would use such skills — so why bother? Other
interviews reveal that parents, by underestimating the specific mathematical prerequisites for
progressing through the educational system, can limit their children’s opportunities. How far
back in time, and how far outside the classroom, must one go to trace such things appropriately?
Another issue has to do with beliefs. For example, the typical American belief that one is either
bomn good or bad at mathematics (in contrast to the typical Japanese belief that one’s performance
in mathematics is directly related to he amount of work one puts into studying) clearly shapes
how students engage mathematically.

Issues of meaningful mathematics (in and out of the classroom)

The question here is: what is meaningful to students, in what ways; what unexpected territory
might one enter when trying to introduce students to rich mathematical terrain? This is, in a broad
sense, a curricular issue. (I take “curriculum” to mean both the materials that students study and
the ways in which they are brought together to study them.) Hamn (2002; in preparation) has
studied the concept of “group-worthy” activities used by one reformroriented mathematics
department. These are mathematical problems and activities that can be accessed from multiple
starting points and that can engage students with diverse mathematical backgrounds. Group-
worthy activities provide affordances for classroom interactions that can enfranchise and support
a wide range of students. Teasing out the interaction of such curricular materials with the kinds of
interactions that can and do take place in the classroom adds yet another level of complexity to
the task of seeing “what counts.”

Curricular choices intended to “reach the students where they are” can raise issues that are not
encountered when one teaches more traditional mathematics. Silver, Smith, & Nelson (1995)
describe one such example. Teachers in the QUASAR program had administered the following
open-ended task to students:

Yvonne is trying to decide whether she should buy a weekly bus pass. On Monday,
Wednesday, and Friday she rides the bus to and from work. On Tuesday and Thursday,
she rides the bus to work, but gets a ride home with her friends. Should Yvonne buy a
weekly bus pass? Explain your answer.

Busy Bus Company Fares

One Way $1.00
Weekly Pass $9.00

S
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Teachers were surprised by the number of students who responded that the weekly pass was a
better buy, given that the one-way fares described in the problem statement added up to only
$8.00 per week. When they discussed their answers with students, “many students argued that
purchasing the weekly pass was a much better decision because the pass could allow many
members of a family to use it (e.g., after work and in the evenings) and it could also be used by a
family member on weekends.” (Silver, Smith, & Nelson, 1995, p. 41) This makes good sense —
i’s a realworld solution to a “real world” problem. It points to the complexities one faces in
designing and implementing curricula that try to bridge meaningfully to children’s lives, and to
the subtleties that one faces in assessing issues such as student thinking and what it means for a
curriculum to enfranchise students.

Concluding Comments

I have argued for some years (see, e.g., Schoenfeld, 1999) that the state of the art is such that
educational researchers can now conduct research in contexts that really matter. For me, that
means mathematics classrooms. I also have my own personal standards for what constitute well-
warranted claims in education. Those have to do with explanation at a level of mechanism, where
one is obligated to explain how things fit together and why things happen. My research on
problem solving and on teaching has typically been at a very fine-grained level of analysis: a
typical claim has been that the student or teacher behaves in particular ways because he or she has
very specific knowledge, goals and beliefs. Looking for causality has often caused me to expand
the scope of inquiry, and to expand the theory within which the empirical work that characterized
the behavior was situated. For example, my analysis of student problem-solving protocols
revealed that students routinely made conjectures in contradiction to things they “knew” (and had
proved just a short time before). This led to studies of beliefs — e.g., the idea that some students
“pelieve” that proof-related knowledge is not relevant or useful when working “discovery”
problems of a particular type. That raised questions about the origins of such beliefs ~ which
turned out to be the mathematical practices in which the students had engaged, over time, in their
mathematics classes. The chain of causality for “simple” behavior in a twenty-minute problem
solving session in the laboratory reached back to formative experiences, over a period of years, in
mathematics classrooms.

The challenge of the problem solving research pales in comparison to the challenges of
developing a coherent frame within which to examine issues of diversity and mathematics
learning, It should be clear that the brief summary of some of what is known about issues of
“algebra for all” given in this paper raises far more questions than answers. Each of the arenas
addressed — context, differential treatment, teacher practices, language and discourse,
participation and agency, and meaningful mathematics in and out of the classroom - is itself
complex and not well understood. Interactions among them are that much more complex.
Painting the “big picture” while maintaining a focus on detail and a predilection for explanation
at a level of mechanism will be an interesting challenge.
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ABSTRACT

Peter Henrici coined the term “algorithmic mathematics” and “dialectic mathematics”
in a 1973 talk. I will borrow these two terms and attempt to synthesize the two aspects
from a pedagogical viewpoint with illustrative examples gleaned from mathematical develop-
ments in Eastern and Western cultures throughout history. Some examples from my teaching

experience in the classroom will also be given.



1 Introduction

At the 1973 Joint AMS-MAA (American Mathematical Society — Mathematical Asso-
ciation of America) Conference on the Influence of Computing on Mathematical Re-
search and Education Peter HENRICI of Eidgendssische Technische Hochschule coined
the terms “algorithmic mathematics” and “dialectic mathematics” and discussed the
desirable equilibrium of these two polarities [8; see also 4, Chapter 4]. In this talk I
will borrow these two terms and attempt to synthesize the two aspects from a peda-
gogical viewpoint with illustrative examples gleaned from mathematical developments
in Eastern and Western cultures throughout history. This paper is to be looked upon
as a preliminary version of the text of my talk, which will surely suffer from the lack
of the much needed reflection which usually arises after the talk and the much desired
stimulation which is brought about by the audience during the talk.

Maybe at the outset I should beseech readers to bear with a more liberal usage of
the word “algorithm” in this talk, viz any well-defined sequence of operations to be
performed in solving a problem, not necessarily involving branching upon decision or
looping with iteration. In particular, this talk does not aim at probing the difference
and similarity between the way of thinking of a mathematician and a computer scientist.
(The latter question certainly deserves attention. Interested readers may wish to consult
the text of a 1979 talk by Donald KNUTH [9].) Hopefully, the meaning I attach to the
terms “algorithmic mathematics” and “dialectic mathematics” will become clearer as
we proceed. Let me quote several excerpts from the aforementioned paper of Henrici
to convey a general flavour before we start on some examples:

“Dialectic mathematics is a rigorously logical science, where state-
ments are either true or false, and where objects with specified
properties either do or do not exist. Algorithmic mathematics is
a tool for solving problems. Here we are concerned not only with
the existence of a mathematical object, but also with the cre-
dentials of its existence. Dialectic mathematics is an intellectual
game played according to rules about which there is a high degree
of consensus. The rules of the game of algorithmic mathematics
may vary according to the urgency of the problem on hand. ---
Dialectic mathematics invites contemplation. Algorithmic math-
ematics invites action. Dialectic mathematics generates insight.
Algorithmic mathematics generates results.” [§]

2 Examples of “algorithmic mathematics” and “di-
alectic mathematics”

My first example is a very ancient artifact dating from the 18th century B.C. (now
catalogued as the Yale Babylonian Collection 7289), a clay tablet on which was inscribed
a square and its two diagonals with numbers (in cuneiform expressed in the sexagesimal
system) 30 on one side and 1.4142129... and 42.426388... on one diagonal (see Figure

1).
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Figure 1

There is no mistaking its meaning, viz the calculation of the square root of 2 and
hence the length of the diagonal of a square with side of length 30. The historians
of mathematics Otto NEUGEBAUER and Abraham SACHS believe that the ancient
Babylonians worked out the square root of 2 by a rather natural algorithm based on
the following principle. Suppose z is a guess which is too small (respectively too large),
then 2/x will be a guess which is too large (respectively too small). Hence, their average
3(z + 2/z) is a better guess. We can phrase this procedure as a piece of “algorithmic
mathematics” in solving the equation X2 — 2 = 0:

1
Set z; =1 and 2,41 = 5(mn +2/z,) forn>1.

Stop when z,, achieves a specified degree of accuracy .

It is instructive to draw a picture (see Figure 2) to see what is happening. The picture
embodies a piece of “dialectic mathematics” which justifies the procedure:

Eisaroot of X = f(X) and € isin I = [a, b)].

Let f and f’ be continuous on I and |f'(z)| < K <1

forall zin I. If z; is in [ and 2,41 = f(z,) for n > 1,

then lim z, = £.
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“Algorithmic mathematics” abounds in the ancient mathematical literature. Let
us continue to focus on the extraction of square root. In the Chinese mathematical
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classics Jiuzhang Suanshu [Nine Chapters On the Mathematical Art] compiled between
100B.C. and 100A.D. there is this Problem 12 in Chapter 4:

“Now given an area 55225 [square| bu. Tell: what is the side of
the square?

... The Rule of Extracting the Square-Root: Lay down the given
area as shi. Borrow a counting rod to determine the digit place.
Set it under the unit place of the shi. Advance [to the left] every
two digit places as one step. Estimate the first digit of the root.
...” (translation in [3})

The algorithm is what I learnt in my primary school days. It yields in this case the
digit 2, then 3, then 5 making up the answer /55225 = 235. Commentaries by LIU Hiu
in the mid 3rd century gave a geometric explanation (see Figure 3) in which integers
a € {0,100,200,...,900}, b € {0,10,20,...,90}, ¢ € {0,1,2,...,9} are found such
that (a + b+ ¢)? = 55225.
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Figure 3

A suitable modification of the algorithm for extracting square root gives rise to
an algorithm for solving a quadratic equation. One typical example is Problem 20 in
Chapter 9 of Jiuzhang Suanshu:

“Now given a square city of unknown side, with gates opening in
the middle. 20 bu from the north gate there is a tree, which is
visible when one goes 14 bu from the south gate and then 1775
bu westward. Tell: what is the length of each side?” (translation
in [3])

Letting z be the length of each side, we see that the equation in question is X 2434X =
71000. A slight modification of the picture in Figure 3 (see Figure 4) will yield a modified
algorithm.

e

Figure 4
The same type of quadratic equations was studied by the Islamic mathematician
Muhammad ibn Miisa AL-KHWARIZMI in his famous treatise Al-kitab al-muhtasar fo
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hisab al-jabr wa-l-mugabala [The Condensed Book On the Calculation of Restoration
And Reduction] around 825A.D. The algorithm exhibits a different flavour from the
Chinese method in that a closed formula is given. Expressed in modern day language,
the formula for a root z of X2+bX = cisz = 1/(b/2)? + c—(b/2). Just as in the Chinese
literature, the “algorithmic mathematics” is accompanied by “dialectic mathematics”
in the form of a geometric argument (see Figure 5).
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Figure 5
The author concluded by saying, “We have now explained these things concisely by
geometry in order that what is necessary for an understanding of this branch of study
might be made easier. The things which with some difficulty are conceived by the eye
of the mind are made clear by geometric figures.”

3 Intertwining of “algorithmic mathematics” and
“dialectic mathematics”

Let us come back to the equation X? —2 = 0. On the algorithmic side we have
exhibited a constructive process through the iteration Zn41 = 3(zn + 2/zn) which
enables us to get a solution within a demanded accuracy. On the dialectic side we
can guarantee the existence of a solution based on the Intermediate Value Theorem
applied to the continuous function f(z) = z* — 2 on the closed interval [1,2]. The two
strands intertwine to produce further results in different areas of mathematics, be they
computational results in numerical analysis or theoretic results in algebra, analysis or
geometry. At the same time the problem is generalized to algebraic equations of higher
degree. On the algorithmic side there is the work of QIN Jiushao who solved equations
up to the tenth degree in his 1247 treatise, which is equivalent to the algorithm devised
by William George HORNER in 1819. On the dialectic side there is the Fundamental
Theorem of Algebra and the search of a closed formula for the roots, the latter problem
leading to group theory and field theory in abstract algebra. In recent decades, there has
been much research on the constructive aspect of the Fundamental Theorem of Algebra,
which is a swing back to the algorithmic side. A classic example to illustrate this back-
and-forth movement between “algorithmic mathematics” and “dialectic mathematics”
is the work of Paul GORDAN and David HILBERT in the theory of invariants at the
end of the 19th century. Gordan was hailed as the “King of the Invariants” and in 1868
established the existence of a finite basis for the binary forms through hard and long
calculations covering page after page. The work was so laborious already for the binary
forms that people could not push forth the argument for forms of higher degree. Hilbert
came along in 1888 to give an elegant short existence proof of a finite basis for forms
of any degree. It is frequently reported that Gordan commented, upon learning of the



proof by Hilbert, “This is not mathematics. This is theology.” What is less frequently
mentioned is that Hilbert worked hard to find a constructive proof of his theorem on
basis. He succeeded in 1892, finding a constructive proof through knowledge of the
existence proof. Upon learning of this constructive proof, Gordan was reported to say,
“T have convinced myself that theology also has its merits.” {12, Chapter V]

Thus we see that it is not necessary and is actually harmful to the development
of mathematics to separate strictly “algorithmic mathematics” and “dialectic mathe-
matics”. Traditionally it is held that Western mathematics, developed from that of
the ancient Greeks, is dialectic, while Eastern mathematics, developed from that of the
ancient Egyptians, Babylonians, Chinese and Indians, is algorithmic. As a statement in
broad strokes this thesis has an element of truth in it, but under more refined examina-
tion it is an over-simplification. Let me illustrate with a second example. This example
may sound familiar to readers, viz the Chinese Remainder Theorem. The source of the
result, and thence its name, is a problem in Sunzi Suanjing {Master Sun’s Mathematical
Manual] compiled in the 4th century that reads:

“Now there are an unknown number of things. If we count by
threes, there is a remainder 2; if we count by fives, there is a
remainder 3; if we count by sevens, there is a remainder 2. Find
the number of things.” (translation in [10])

To solve this problem, which can be written in modern terminology as a system of
simultaneous linear congruence equations

z=2 (mod 3), z=3 (mod 5), z=2 (mod?7),

the text offers three magic numbers 70, 21, 15 which are combined in a proper way to
yield the least positive solution

2x70+3x214+2%x15-105x2=23.

In his treatise Suanfa Tongzong [Systematic Treatise on Arithmetic] of 1592 CHENG
Dawei even embellished this solution as a poem which reads:
“Tis rare to find one man
Of seventy out of three,
There are twenty one branches
On five plum blossom trees.
When seven disciples reunite
It is in the middle of the month,
Discarding one hundred and five
You have the problem done.”
It is interesting to note (but I am no qualified historian of mathematics to trace the
transmission of knowledge) that the same problem with its solution also appears in
Liber Abaci of 1202 by Leonardo of Pisa, better known as FIBONNACI. It reads:

“Let a contrived number be divided by 3, also by 5, also by 7; and
ask each time what remains from each division. For each unity
that remains from the division by 3, retain 70; for each unity that
remains from the division by 5, retain 21; and for each unity that
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remains from the division by 7, retain 15. And as much as the
number surpasses 105, subtract from it 105; and what remains to
you is the contrived number.” [4, p.188]

In ancient China the problem was handed down from generation to generation, grad-
ually attaining a glamour which was attached to events as disparate as a legendary
enumeration of the size of his army by the great general HAN Xin in the late 3rd cen-
tury B.C. to a parlour trick of guessing the number of a collection of objects. (The
story about Han Xin may explain a common confusion some people make in identifying
the author of Sunji Suanjing with another Sun Ji who flourished seven centuries earlier
and who was famous for his treatise on military art.) This much is a familiar story
told and re-told. We will turn to look at the problem from an angle not as commonly
adopted by popular accounts.

The first time I myself encountered the name of the Chinese Remainder Theorem
(CRT) explicitly mentioned was when I, as a student, read Chapter V of Commutative
Algebra by Oscar ZARISKI and Pierre SAMUEL [14]. The name is given to Theorem
17 about a property of a Dedekind domain, with a footnote that reads:

“A rule for the solution of simultaneous linear congruences, es-
sentially equivalent with Theorem 17 in the case of the ring J
of integers, was found by Chinese calendar makers between the
fourth and the seventh centuries A.D. It was used for finding the
common periods to several cycles of astronomical phenomena.”

In many textbooks on abstract algebra the CRT is phrased in the ring of integers Z
as an isomorphism between the quotient ring Z/M; ... M,Z and the product Z /M- Z x
-+ X Z/M,Z where M;, M; are relatively prime integers for distinct ¢, j. A more general
version in the context of a commutative ring with unity R guarantees an isomorphism
between R/I1N---NI, and R/ x---xR/I, where I,... , I, are ideals with I;+1; = R
for distinct %, j. Readers will readily provide their own “dialectic” proof of the CRT.

For many years I have been curious as to how the abstract CRT develops from
the concrete problem in Sunzi Suanjfing. One mostly cited (but not quite accurate)
account appears in Volume II of History of the Theory of Numbers by Leonard Eugene
DICKSON which says:

“Sun-Tsi, in a Chinese work Suan-ching (arithmetic), about the
first century A.D., gave in the form of an obscure verse a rule
called t’ai-yen (great generalization) to determine a number hav-
ing the remainders 2, 3, 2, when divided by 3, 5, 7, respectively.
.7 [5, Chapter II]

This account probably originated from a series of articles published in the Shanghai
newspaper North-China Herald titled “Jottings on the science of the Chinese” written
by the British missionary Alexander WYLIE of the London Missionary Society. Wylie
was one of the most prominent pioneers in the study of Chinese Science after Antoine
GAUBIL of the first half of the 18th century and Edouard BIOT of the first half of the
19th century. In No. 116 (October 1852) of the North-China Herald he wrote:

“The general principles of the Ta-yen are probably given in their
simplest form, in the above rudimentary problem of Sun Tsze;
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Subsequent authors enlarging on the idea, applied it with much
effect to that complex system of cycles and epicycles which form
such a prominent feature in the middle-age astronomy of the Chi-
nese. The reputed originator of this theory as applied to astron-
omy is the priest Yih Hing who had scarely finished the rough
draft of his work Ta-yen leth shdo, when he died A.D. 717. But it
is in the “Nine Sections of the art of numbers” by Tsin Keu chaou
that we have the most full and explicit details on this subject. ...”

The account of Wylie was subsequently translated into German by K.L. BIERNATZKI
in 1856, elaborated by L. MATTHIESSEN in 1874/76, who pointed out that the Chi-
nese result is same as that expounded by Carl Friedrich GAUSS in Section II of his
Disquisitiones Arithmeticae of 1801 [6]. (Kurt MAHLER clarified this mistaken point
in a short paper published in Mathematische Nachrichten in 1958 [11].)

The author of the 1247 treatise Shushu Jiuzhang [ Mathematical Treatise in Nine
Sections| referred to in Wylie’s account was one of the most famous Chinese mathe-
maticians of the 13th century by the name of QIN Jiushao (Tsin Keu chaou). From
the first two problems in Book I we can discern the source of the problem as well as the
naming of the technique he introduced, viz “Da Yan (Great Extension) art of searching
for unity”. Problem 1 states:

“In the Yi Jing [Book of Changes] it is said, “The Great Extension
number is 50, and the Use number is 49.” Again it is said, “It is
divided into 2 [parts], to represent the spheres; 1 is suspended to
represent the 3 powers; they are drawn out by 4, to represent the 4
seasons; three changes complete a symbol, and eighteen changes
perfect the diagrams.” What is the rule for the Extension and
what are the several numbers?” (translation in Wylie’s article)

This is a problem about the art of fortune telling by combination of blades of shi grass.
It provides an exercise about residue classes of congruence. Problem 2 states:

“Let the solar year be equal to 365% days, the moon’s revolution,
29% days, and the Jia Zi, 60 days. Suppose in the year A.D.
1246, the 53rd day of the Jia Zi is the Winter solstice or 1st day
of the Solar year; and the 1st day of the Jia Zi is the 9th day
of the month. Required the time between two conjunctions of
the commencement of these three cycles; also, the time that has
already elapsed, and how much as yet to run.” (translation in

Wylie’s article)

This is a problem about the reckoning of calendar where the number of days was counted
from a beginning point called the Shang Yuan, that being the coinciding moment of
the winter solstice, the first day of the lunar month and also the first day of the cycle
of sixty.

Let us phrase the “Da Yan art of searching for unity” in modern terminology to
illustrate the algorithmic thinking embodied therein. The system of simultaneous con-
gruence equation is

z=A;, (mod M), z=A, (mod M), ..., z=A, (mod M,) .



Qin’s work includes the general case when Mj,..., M, are not necessarily mutually
relatively prime. His method amounts to arranging to have m;|M; with my,... ,m,
mutually relatively prime and LCM(my, ... ,m,) = LCM(M,... ,M,). An equiva-
lent problem is to solve z = A; (mod m;) for ¢ € {1,...,n}, which is solvable if and
only if GCD(M;, M;) divides A; — A; for all i # j. The next step in Qin’s work reduces
the system (in the case My, ... , M, are mutually relatively prime) to solving separately
a single congruence equation of the form k;b; = 1 (mod M;). Finally, in order to solve
the single equation kb =1 (mod m) Qin uses reciprocal subtraction, equivalent to the
famous euclidean algorithm, to the equation until 1 (unity) is obtained.
Writing out the algorithm in full, we have

m=bq1+r1,b=r1q2+7“2,7“1=r2q3+7“3, etc. withm>b>ri >ry>---

so that ultimately r; becomes 1. Set k; = ¢y, then k1b = ¢1b = —r; (all congruences
refer to modulo m). Set ky = kigo + 1, then kob = kigeb+ b = —1r1gp + b = 7o
Set k3 = kogs + ki, then ksb = kogsb + kib = r9qs — 11 = —73. Set kg = kaqq + ks,
then k4b = kaqsb + kob = —raqq + 7o = 74, etc. In general, we have kb = (—1)r
(mod m). This algorithm provides a method for solving kb = 1 (mod m) as well as
a proof that what is calculated is a solution. The method is to start with (1,b) and
change (k;,7;) to (Kiy1,7i+1), stopping when r; = 1 and 7 is even. Then k; is a solution.
For example, to solve 14k = 1 (mod 19) we start with (1,14), which is changed to
(1,5), then to (3,4), then to (4,1), then to (15,1). Hence 15 is a solution. When the
calculation is performed by manipulating counting rods on a board as in ancient times,
the procedure is rather streamlined. Within this algorithmic thinking we can discern
two points of dialectic interest. The first is how one can combine information on each
separate component to obtain a global solution. This feature is particularly prominent
when the result is formulated in the CTR in abstract algebra. The second is the use of
linear combination which affords a tool for other applications such as for curve fitting
or the Strong Approximation Theorem in valuation theory.

It is not surprising that the euclidean algorithm is used in Qin’s work. The principle
was familiar to the ancient Chinese who explained it in Chapter 1 of Jiuzhang Suanshu
as:

“Rule for reduction of fractions: If [the denominator and numera-
tor] can be halved, halve them. If not, lay down the denominator
and numerator, subtract the smaller number from the greater. Re-
peat the process to obtain the dengsu (greatest common divisor).
Reduce them by the dengsu.” (translation in [3])

It is called the euclidean algorithm in the Western world because it is contained in the
first two propositions of Book VII of Elements compiled by EUCLID in about 300 B.C.
If we read these two propositions we would be struck by its strong algorithmic flavour.
Proposition 1 states:

“Two unequal numbers being set out, and the less being contin-
ually subtracted in turn from the greater, if the number which
is left never measures the one before it until an unit is left, the
original numbers will be prime to one another.” (translation in

[7])
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This is followed by Proposition 2 which says:

“Given two numbers not prime to one another, to find their great-
est common measure.” (translation in {7])

A reading of the proofs of these two propositions will offer the reader a more balanced
view of the style of the book Elements. The kind of mathematics developed in El-
ements is traditionally seen as an archetype of “dialectic mathematics”. This more
balanced view betrays the over-simplified belief that Eastern-Western mathematics is
synonymous with algorithmic-dialectic mathematics. Furthermore, some people even
stress above all only the formal and rigorous aspect of “dialectic mathematics”. I will
now follow the reasoning put forth by S.D. AGASHE [1] to reveal the (somewhat algo-
rithmic) background and motives of the mathematics contained in the first two books
of Elements. Proposition 14 in Book IT addresses the construction of a square equal
(in area) to a given rectilinear figure. It seems the problem of interest is to compare
two rectilinear figures, whose one-dimensional analogue of comparing two line segments
is easy. For two line segments we can put one onto the other and see which one lies
completely inside the other (or is equal to the other). Actually this is what Proposition
3 of Book I sets out to do:

“Given two unequal straight lines, to cut off from the greater a
straight line equal to the less.” (translation in [7])

To justify this result we have to rely on Postulate 1, Postulate 2 and Postulate 3.
Unfortunately, for rectilinear figures the problem is no longer as straightforward, except
for the case of two squares when we can reduce the investigation to the sides of each
square by putting one onto the other so that one square lies completely inside the other
(or is equal to the other). Incidentally we need Postulate 4 to guarantee that. Hence we
have found a way to compare two rectilinear figures, viz we try to reduce a rectilinear
figure to a square, which is the content of Proposition 14 in Book II:

“Construct a square equal to a given rectilineal figure.” (transla-
tion in [7])

Let us first try to reduce a rectangle to a square. A rectangle can be readily converted
to an L-shaped gnomon which is the difference between two squares. Actually that is
the content of Proposition 5 in Book II (see Figure 6).
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To make the difference of two squares a square we can ask a reversed question
about the sum of two square being equal to a square. The latter question is answered
by the famous Pythagoras’ Theorem which is Proposition 47 in Book I! To complete
the picture we must construct a rectangle equal to a rectilinear figure. By decomposing



a rectilinear figure into triangles and by contructing a rectangle (or more generally a
parallelogram with one angle given) equal to each triangle, the problem will be solved.
The construction of a parallelogram (with one angle given) equal to a triangle is the
content of Proposition 42, Proposition 44 and Proposition 45 in Book I, whose proofs
all rely on Postulate 5 about parallelism. Viewed in this way, the axiomatic approach
exemplified in Flements gains a richer meaning.

4 Pedagogical viewpoint

I now come to the pedagogical viewpoint. In the first part of my talk I tried to show
how the two aspects — “algorithmic mathematics” and “dialectic mathematics” —
intertwine with each other. It reminds me of the “yin” and “yang” in Chinese philosophy
in which the two aspects complement and supplement each other with one containing
some part of the other. (To go even further than that I would even borrow a metaphor
probably from the biologist and popular science writer Stephen Jay GOULD: Is a zebra
a white animal with black stripes or a black animal with white stripes?) If that is
the case, then in the teaching of mathematics we should not just emphasize one at the
expense of the other. When we learn something new we need first to get acquainted
with the new thing and to acquire sufficient feeling for it. A procedural approach helps
us to prepare more solid ground to build up subsequent conceptual understanding. In
turn, when we understand the concept better we will be able to handle the algorithm
with more facility. In the mathematics education community there has been a long-
running debate on procedural vs conceptual knowledge, or process vs object in learning
theory, or computer vs no-computer learning environment. In a more general context
these are all related to a debate on algorithmic vs dialectic mathematics, which are
actually not two opposing forces but can be joined to provide an integrated way of
learning and teaching. I will now give five examples on learning and teaching, with the
last two having more to do with research. I apologize for the obvious lopsided emphasis
on algebra in these five examples. My excuse is that they all have to do with my own
classroom experience.

(1) Solving a system of linear equations by reduction to echelon form is clearly algo-
rithmic in nature. (By the way, the algorithm was explicitly recorded and explained in
Chapter 8 of Jiuzhang Suanshu. The title of the chapter itself is telling — Fangcheng,
which means literally “the procedure of calculation by a rectangular array”.) However,
a clear understanding of this working does much to help us understand the more ab-
stract and theoretical part of linear algebra and see why many of the concepts and
definitions make sense. I will not therefore regard an exercise in manipulating a system
of linear equations as a routine exercise for those who are less apt at coping with ab-
stract theory, but as a preparation for it. Suitably dressed up, even a routine exercise
can become a useful lead into interesting and useful theory. As an example, we can ask:

“Let W, be the subspace in R*® spanned by (1,1,2), (3,0, 1),
(1,—2,-5) and let W5 be the subspace in R? spanned by (4,1,1),
(1,4,-1), (2,-7,3). Calculate the intersection of W) and W,.
Describe the geometry of it.”

An ad hoc calculation in this concrete case supported by a clear geometric picture, with
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(4,1,1) lying on the line of intersection of the two hyperplanes W; and W, leads to a
more theoretical discussion in a general situation.

(2) As a pupil I came across in school algebra many homework problems which ask for
writing expressions like p3q + pg® or 5p? — 3pg + 5¢% or p* 4+ ¢* or ... in terms of a,b,¢c
where p, ¢ are the roots of aX? + bX + ¢ = 0. Each time I could arrive at an answer,
maybe sometimes after long calculation. I used to query why an answer must come up
for such so-called “symmetric” expressions. It was only many years later that I came
to understand this in the form of the Fundamental Theorem on Symmetric Polynomial.
There are different proofs for the result and it can be formulated in a rather general
context of polynomials over a commutative ring with unity. But I still find it helpful to
work out one example in an algorithmic fashion to get a flavour of the dialectic proof.
For instance let us try to express the polynomial

X3X2 4+ X3X24+ X3X2+ XPX3 + XoX5 + XX}

in terms of o7 = X1+ X+ X3, 00 = X1 Xo+ Xo X3+ X3X1, 03 = X1 X2X3. Naturally we
can write the polynomial in X, X, X3 as a polynomial in X3 with coefficients involving
Xl, X2, i.e.

FO0, X, X3) = (GX3 + XPX3) + (X7 + XP) X3 + (XT + X3) X5 .

Applying our knowledge of polynomials in X;, X, (after so much working in school
algebra), we arrive at

F(X1, Xo, X3) = 73 + (17 = 3nim) X2 + (77 — 212) X3

where 11 = X; + X, 72 = X1 Xo. Now, write 01 =71 + X3, 02 = To + 11 X3, 03 = 72.X3.
From the first two relationships we can express 71, 75 in terms of o1, 02 and Xj, i.e.
11 = 0y — X3, 7o = 09 — 01 X3 + X2. Substituting 7o back to the third relationship
we can express X5 = o3 — 09X3 + 01X2. Hence we can express the coefficients TS,
'rf — 31179, 'rlz — 27, in terms of 01, 09,03 and X3 up to the second power. Substituting
back to f(X1, Xa, X3) we obtain, after some rather tedious (but worthwhile!) work,

f(Xyq, Xq, X3) = 0102 — 20203 — 0903 .

Note that suddenly all terms involving X3 vanish and that is the answer we want!
Coincidence in mathematics is rare. If there is any coincidence, it usually begs for
an explanation. The explanation we seek in this case will lead us to one proof of the
Fundamental Theorem on Symmetric Polynomial.

(3) The simplest type of extension field discussed in a basic course on abstract algebra is
the adjunction of a single element algebraic over the ground field, say Q. The element
a, say in C, is said to be algebraic over Q if a is the zero of some polynomial with
coefficients in Q. The dialectic aspect involves the “finiteness” of the extension field
Q(a) viewed as a finite-dimensional vector space over Q. It is helpful to go through
some algorithmic calculation to experience the “finiteness”. For instance, take o = V2.
It is easy to see that a typical element in Q(a) (by knowing what Q(c) stands for) is
of the form (a + ba)/(c + da) where a,b,c,d are in Q, because any term involving a
higher power of a can be ground down to a linear combination (over Q) of 1 and a.
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The procedure on conjugation learnt in school allows us to revert the denominator as
part of the numerator, i.e.

1/(c+da) = (c—da)/(c+da)(c—da)=(c—da)/(c* - 2d%)
= [(¢/(@ =2+ [(-d)/(’ - 2d*)]a .

Hence, a typical element in Q(c) is of the form a + ba where a,b are in Q. It is more

instructive to follow with a slightly more complicated example such as a = V1 V3.
It is not much harder to see that we can confine attention to linear combinations of
1,a, a2, a®, but this time it is much more messy to revert the denominator as part
of the numerator. This will motivate a more elegant dialectic proof modelled after
the algorithmic calculation for a = V2. Another useful piece of knowledge about
algebraic elements is: If @ and b (say in C) are algebraic over Q, then a + b is algebraic
over Q. The dialectic aspect involves the notion of “finiteness” by viewing Q(a,b) as
a finite-dimensional vector space over Q. Going through an algorithmic calculation
may help to consolidate understanding. For instance, take V2, which is algebraic
over Q as a zero of X? — 2, and take /3, which is algebraic over Q as a zero of
X3 — 3. Try to find a polynomial with coefficients in Q such that V2 4+ /3 is a zero
of it. We can follow an algorithm which expresses X? — 2 = (X — vV2)(X + V2)
and (X3 - 3) = (X — a)(X — aw)(X — aw?) where a(€ R) is such that o® = 3 and
W= —;—(\/52 — 1), then consider the polynomial

9(X) = (X—V2-0a) (X +V2—a)(X —V2—aw)(X +V2-aw)(X —v2-aw?)(X +V2-aw?)

which reduces after some calculation to X% +6X4—6X3+12X%2—36X +1 (noting that
a® =3 and 1 +w+w? =0). It is certainly not incidental that ultimately no coefficient
involves v/2 or a or w ! Further enquiry will suggest a constructive proof of the general
result by making use of symmetric polynomials.

(4) To begin with a simple example, let z be a (complex) root other than 1 of the
equation X3 —1=0,s0 22 + 22+ 22 + 2+ 1 =0, or (2! +2%) + (22 + 2%) = 0. Write
no = z' 4+ 2% and n; = 2% + 2® and note that 7o + 71 = —1 and nony =10 +m = —L.
Hence, 7o, 7, are roots of Y2 +Y — 1 =0, say

-1+ 5 -1-5
UOZT’m:—Z_'

From g = z+% we obtain z22—mngz+1 = 0 so that one value for z is z = %(770+\/ ng—4)=

-1+ v5+ /=10 — 2v/5]. This calculation is the basic idea Carl Friederich GAUSS
applied to solve the equation XY — 1 = 0 where N is a prime number. (I have a
slight suspicion that Gauss was inspired by the work of Alexandre-Théophile VAN-
DERMONDE who solved that equation in a brilliant 1774 paper titled “Memoire sur
la résolution des équations” [13, Chapter 11 and Chapter 12].) The calculation will go
through in general if at each stage we can break up the sum of powers of z into two
halves, which is the case when N is of the form 2% 4+ 1, i.e. N is a Fermat prime.
This is the theory of cyclotomy developed by GAUSS in Section VII of his Disquisi-
tiones Arithmeticae of 1801 in connection with his celebrated discovery in 1796 of the
constructibility of a regular seventeen-sided polygon by straight-edge and compasses

[6].
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We now go tangentially off the work of Gauss but take with us one crucial point:
express 707, in the form ang + b + ¢ for some integers a, b, ¢. Let p be an odd prime of
the form 2f + 1 and g is a primitive root of p. Let Co = {¢g**|s € {0,1,2,...,f — 1}}
and C; = {¢g**s € {0,1,2,...,f —1}}, then {1,2,... ,p — 1} is decomposed into the
disjoint union CoUC;. We call Cy, C) cyclotomic classes and (3, j) = |(C;+1)NC;j| (with

3,5 € {0,1}) cyclotomic numbers. If o = 3 2* and gy = ) ', then it turns out that
teCo teCq

mo+m = —1 and nom = (1,0)m0 + (1,1)m1 + ¢ where c is the number of 0 in Gy + C4
(repetition counted). More generally, let p be a prime number and ¢ = p* = ef+1land g
is a generator of the multiplicative group of the finite field GF(g), which is decomposed
into a disjoint union Co U Cy U -+ U Ceq where C; = {¢g***|S € {0,1,2,...,f - 1}}
(cyclotomic class). We call (i, 5) = |(Ci+1)NC;| (with4,j € {0,1,... ,e—1}) cyclotomic
numbers. The fascinating property which comes out of the calculation is that, when
and only when (3,0) = (f — 1)/e for all s € {0,1,... ,e — 1}, then Cp is a difference
set in GF(q), i.e. each nonzero element in GF(q) is the difference z — y of the same
number of pairs of elements (z,y) in Co x Cp. For instance, this is true for ¢ = 11 so
that Co = {1, 3,4, 5,9}, the set of quadratic residues modulo 11, is a difference set. If
you look at all the differences (modulo 11) z — y of pairs (z,y) of numbers in Cp, you
will find each nonzero number appearing exactly twice. Research on difference sets is a
nice mixture of “algorithmic mathematics” and “dialectic mathematics”.

(5) The last example is a personal anecdote about a piece of research work. Let me first
describe the problem. Let F be the finite field with ¢ = p® elements, i.e. F = GF(q).
A function f : F — C is called a nontrivial multiplicative character of F'if f(0) = 0,
f(1) =1but f# 1on F* = F\ {0}, and f(bib2) = f(b1)f(b2) for all b1, b, in F. In
this case, it is well-know that

—— _Jg—1 ifa=0;
;f(b)f(bﬂ)—{_l fazo = #

Harvey COHN asks whether the converse is true: If f : F — C is such that f(0) =0,
f(1)=1, |f(a)] =1 for all a in F* and (#) holds, must f be a nontrivial multiplicative
character of F'? In the summer of 1996 I could settle the real case (so that f(a) is
either 1 or —1 for nonzero a) with an affirmative answer when F is a prime field. That
much is “dialectic mathematics”. I failed to extend the argument to the case when
F is not necessarily a prime field. Hence the work was put aside until my interest
was resurrected in the spring of 1999 when a young colleague, Stephen CHOI, gave
a seminar on the same problem arising in a different context, attacked by a different
approach. Naturally we joined forces to look at the general case. We noted that (#)
involves only the addition in £ but not the multiplication in F'. If we compose a specific
injective multiplicative character x : F — C of F' with an additive bijection ¢ : ' — F,
then f = x o ¢ satisfies (#) since x satisfies (#). It remains to see if there exists any
additive bijection ¢ which is not multiplicative. I turned to “algorithmic mathematics”
by actually doing the calculation using a representation of F' as the quotient ring of
GF(p)[X] modulo the ideal generated by an irreducible polynomial of degree s. One
day upon re-checking the calculation of some concrete cases, I found an error, which I
corrected. But in either case — the original incorrect version and the correct version —
(#) was satisfied. To my dismay more errors in the calculation were detected, but each
time, with correction or no correction, (#) was still satisfied. That made me become
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aware that more often than not, ¢ is not multiplicative. Finally we could prove this
and give a negative answer to the problem in the case of non-prime fields [2].

5

Epilogue

To conclude I would like to share with readers a Zen saying from the Tang monk
Qingyuan Weixin: '

“Before I had studied Zen for thirty years, I saw mountains as
mountains, and waters as waters. When [ arrived at a more inti-
mate knowledge, I come to the point where I saw the mountains
are not mountains, and waters are not waters. But now that I
have got its very substance | am at rest. For it is just that I
see mountains once again as mountains, and waters once again as

waters.”
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ABSTRACT

I address four of the seven themes of the 2™ International Conference on the Teaching of Mathematics —
research, technology, pedagogical innovation, and curricular innovation - from the point of view that
learning mathematics is, first of all, learning. Research from a variety of fields — education, neurobiology,
cognitive psychology — provides a consistent set of messages about what learning is, how learning takes
place, and how teachers can facilitate learning.

I offer necessarily brief surveys of research on the main themes, and then | describe how my
understanding of this research has led to the design of a learning environment (a combination of an
interactive classroom, an online delivery system, a rich set of tools, demanding course requirements,
innovative course materials, effective in-class and assessment practices, and intangibles) that is radically
different from my practice of, say, 20 years ago. | also provide an example of a research-based design for a
single lesson.

My conclusions touch on the need for continuous curriculum renewal, for effective strategies to stimulate
deep learning, for goal-directed assessments, for addressing the needs of a would-be mathematically literate
public, and for preservice and inservice professional development.
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1. Introduction

The 2nd International Conference on the Teaching of Mathematics intends to address new ways
of teaching undergraduate mathematics. The first four of seven conference themes (slightly
abridged) are

e EDUCATIONAL RESEARCH: Results of current research in mathematics education and

the assessment of student learning. ...

e TECHNOLOGY: Effective integration of computing technology...into the undergraduate

curriculum

e INNOVATIVE TEACHING METHODS: ... cooperative and collaborative teaching,

writing in mathematics, laboratory courses.

e CURRICULA INNOVATIONS: Revisions of specific courses and assessment of the

results ... innovative applications, project driven curricula.

This paper cuts across all four of these themes — and has some implications for the other three
as well — professional development, relationships to other disciplines, and distance learning
technologies. .

I write from the perspective of a 40-year teaching career at Duke and other universities,
including many attempts at innovative curriculum development and incorporation of technology
into the learning process. To be candid, for the first half of my career | mostly failed to have any
significant impact on my students, at least in the sense of stimulating sound knowledge and
understanding of mathematics. My truly successful students were few enough in number that I
still remember their names — and I have always suspected that they would have succeeded just as
well without me.

I’'m obviously a slow learner, but frustration is a powerful motivator. A series of opportunities
in the 1980’s and since has permitted me to learn a good deal about my profession that I should
have learned much earlier, and to put that learning to use as a teacher and curriculum developer.
At first my learning was experiential (that is to say, ad hoc), trying things in the classroom,
rejecting what did not work, and reinforcing what did. One might describe this as “natural
selection” in the evolutionary sense. Later 1 began to study the research literature — not just in
mathematics education, but also in cognitive psychology and neurobiology — to find reasons for
my successes and failures. 1t probably would have been more efficient to proceed in the other
order — as | said, I’m a slow learner. !n this paper I share some of what I have learned, along with
connections to the conference themes.

2. Research

The first part of my title comes from the book How People Learn: Brain, Mind, Experience,
and School, a (U.S.) National Research Council study (Bransford, ef al., 1999) that summarizes the
very substantial body of research on learning, especially that of the past 30 years. Here is the start
of the Executive Summary (p. xi):

“Learning is a basic, adaptive function of humans. More than any other species, people
are designed to be flexible learners and active agents of acquiring knowledge and skills.
Much of what people learn occurs without formal instruction, but highly systematic and
organized information systems — reading, mathematics, the sciences, literature, and the
history of a society — require formal training, usually in schools. Over time, science,
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mathematics, and history have posed new problems for learning because of their growing
volume and increasing complexity. The value of the knowledge taught in school also began
to be examined for its applicability‘to situations outside school.

“Science now offers new conceptions of the learning process and the development of
competent performance. Recent research provides a deep understanding of complex
reasoning and performance on problem-solving tasks and how skill and understanding in
key subjects are acquired. ... ”

My point in citing this and other works on learning research is that learning mathematics is,
first and foremost, learning. Our subject is not exempt from what others have learned about
learning, and indeed our curricula and pedagogy, to be successful, must be informed by research
on learning. Readers of this paper will probably not be surprised by any of the findings in the
NRC study — but may be surprised to learn the strength of the research base underlying the
strategies we have come to associate with the words “reform” and “renewal.”

The 1990’s have been described as “The Decade of the Brain,” a period in which the study of
live, functioning, normal brains has come into its own through non-invasive technologies, such as
positron emission tomography (PET) and functional magnetic resonance imaging (fMRI). This
research will continue for many decades, of course. As the NRC study states (p. xv), “What is
new, and therefore important for a new science of learning, is the convergence of evidence from a
number of scientific fields.” (Emphasis in the original.) That is, the messages from neuroscience
are entirely consistent with and supportive of what we have learned from- developmental
psychology, cognitive psychology, and other areas of research.

There is one sense in which learning mathematics is different from learning many other things,
such as speaking our native language, remembering visual and aural images of familiar people and
places, and driving a car. The first and most fundamental biological fact about our brains is that
they have not evolved significantly from the brains of our hunter-gatherer ancestors. Thus, we are
superbly adapted — or would be if it were not for environmental influences — for fight-or-flight
decisions and other survival tactics. As Dehaene (1997) has so beautifully documented in The
Number Sense, this means that humans (and other species as well) are practically hard-wired to do
arithmetic with small integers — but everything else in mathematics is hard, because it doesn’t
come to us instinctively. On the other hand, we learn many things that are not instinctive in an
evolutionary sense, such as history, philosophy, foreign languages (beyond infancy), music, and
neurobiology. One might say the Education is about learning the things that hard to learn — of
which mathematics is just one example. [Exercise for the reader: Why is “driving a car” — clearly
not an evolutionary adaptation — a relatively easy task for adolescents and adults in a developed
society?]

We summarize here some of the key findings from the NRC study (Bransford, ef al., 1999, pp.
xii-xviii) that are relevant to collegiate education, in particular, to undergraduate mathematics.

¢ Collateral Development of Mind and Brain

o “Learning changes the physical structure of the brain.”
» “Structural changes alter the functional organization of the brain, [i.e.], learning
organizes and reorganizes the brain.”
o “Different parts of the brain may be ready to learn at different times.”
¢ Durability of Learning and Ability to Transfer to New Situations
»  “Skills and knowledge must be extended beyond the narrow contexts in which they are
first learned.”
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“...a learner [must] develop a sense of when what has been learned can be used ....
Failure to transfer is often due to ... lack of ... conditional knowledge.”

“Learning must be guided by general principles .... Knowledge learned at the level of
rote memory rarely transfers ....”

“Learners are helped in their independent learning attempts if they have conceptual

knowledge. ...”
“L earners are most successful if they are mindful of themselves as learners and thinkers.
... self-awareness and appraisal strategies keep learning on target ... . ... this is how

human beings become life-long learners.”

+ Expert vs. Novice Performance

“Experts notice ... patterns ... that are not noticed by novices.”

“Experts have ... [organized] content knowledge ..., and their organization ... reflects a
deep understanding of the subject matter.”

“Experts’ knowledge cannot be reduced to sets of isolated facts ... but, instead, reflects
contexts of applicability ....”

“Experts have varying levels of flexibility in their approaches to new situations.”
“Though experts know their disciplines thoroughly, this does not guarantee that they are
able to instruct others ....”

+ Designs for Learning Environments

“Learner-centered environments ... Effective instruction begins with what learners
bring to the setting ... learners use their current knowledge to construct new knowledge
. what they know and believe at the moment affects how they interpret new
information ... Sometimes learners’ current knowledge supports new learning;
sometimes it hampers learning.”
“Knowledge-centered environments The ability to think and solve problems requires
knowledge that is accessible and applied appropriately. ... Curricula that are a ‘mile
wide and an inch deep’ run the risk of developing disconnected rather than connected
knowledge.”
“Assessment to support learning ... Assessments must reflect the learning goals .... If
the goal is to enhance understanding and applicability of knowledge, it is not sufficient
to provide assessments that focus primarily on memory for facts and formulas.”
“Community-centered environments [An] important perspective on learning
environments is the degree to which they promote a sense of community. ...”

¢ Effective Teaching

“Effective teachers need ‘pedagogical content knowledge’ — knowledge about how to
teach in [the] particular [discipline], which is different from knowledge of general
teaching methods.”

“Expert teachers know the structure of their disciplines and [have] cognitive roadmaps
that guide the assignments they give ..., the assessments they use ..., and the questions
they ask in the ... classroom ....”

¢ New Technologies

“Because many new technologies are interactive, it is now easier to create environments
in which students can learn by doing, receive feedback, and continually refine their
understanding and build new knowledge.”

“Technologies can help people visualize difficult-to-understand concepts ....”
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e “New technologies provide access to a vast array of information, including digital
libraries, real-world data for analysis, and connections to other people who provide
information, feedback, and inspiration, all of which can enhance the learning of teachers

and administrators as well as students.”
®

3. Technology

There has been a great deal of controversy over the past two decades about the presumed
effects, good and bad, of using technological tools (calculators and computers) in teaching and
learning mathematics. The debate is beginning to be informed by a substantial and growing body
of research, which one hopes in time will replace strident assertions of deeply held opinions. The
NRC report cited in the preceding section highlights the positive features, particularly of
interactive technologies, for learning in general. A forthcoming volume (Heid and Blume, to
appear) surveys research on the role of technology in teaching and learning mathematics at all
levels. As a co-author of one of the chapters in that volume (Tall, et al., to appear), | have had an
opportunity to learn more about this research as it relates to college-level mathematics. Our paper
includes an analysis of a large number of recent research papers and Ph.D. theses in mathematics
education that focus on technology in calculus and related subjects. In simplified form, the key
messages are

1. Technology used inappropriately makes no significant difference. In particular,
adding calculators and/or computers to a traditionally taught and assessed
mathematics course may make it marginally better or worse, but there won’t be
much change. “Better” is likely to be associated with students finding ways to use
the technology that are not necessarily planned by the instructor. “Worse” is likely
to be associated with time and effort devoted to yet another task, particularly if it is
seen as disconnected from all the others.

2. Technology integrated intelligently with curriculum and pedagogy produces
measurable learning gains. It may be impossible to tease out whether the
gains are the direct result of the technology or of the rethought curriculum and
pedagogy. (Do it matter?)

3. There is little evidence that one technology is “better” than another. What
matters is how the technology is used.

4, There is substantial evidence that using computer algebra systems for conceptual
exploration and for learning how to instruct the software to carry out symbolic
calculations leads to conceptual gains in solving problems that can transfer to later
courses. In comparison, students in traditional courses tend to use more procedural
solution processes that do not easily transfer to new situations.

5. Technology enables some types of learning activities (e.g., discovery learning) and
facilitates some others (e.g., cooperative learning) that are harder or impossible to
achieve without technology.

These results are completely consistent with what is known about learning in general — which
reinforces my point that learning mathematics is, first of all, learning, and only secondarily about
mathematics.

One of the more interesting points in the research on technology in mathematics courses is the
role of the teacher in influencing the outcome. Keller and Hirsch (1998) found that students’
preferences for numeric, graphic, or symbolic representations reflect in part the teacher’s
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preference. Kendal and Stacey (1999) studied three teachers who taught the same calculus
syllabus using TI1-92 symbolic calculators. Teacher A enthusiastically used the computer algebra
system at every opportunity, while Teacher B was more reserved and underpinned the work with
paper-and-pencil calculations. Teacher C was enthusiastic about the graphing abilities of the
calculator and used it more often for graphical insight than for symbolic calculation. The three
teachers also had different predictions about their students’ algebraic competence, geometric
competence, and likelihood of success while using the technology. Mean scores on the common
end-of-course assessment were essentially the same for the three sections, but students in each of
the sections were successful on different questions, more or less in accord with their teacher’s
expectations and privileging of specific uses of the technology.

4. Curriculum

What do we really want to teach, and why do we want to teach it? Are the important topics in
mathematics essentially unchanged over time, or should the curriculum be viewed as something
like a living organism — perhaps as a species of organisms, with births, deaths, evolution?

Whenever 1 think about these questions, 1 am reminded of our sister sciences, for which the
answers are much more obvious. For example, when 1 was a student, continental drift was
considered a heretical theory — not just wrong but wrong-headed, not worth serious scientific
discussion. One could easily list several dozen significant paradigm shifts in science over the past
50 years, most of which have been reflected in science curricula at some level.

Over the same period of time, mathematical knowledge has literally exploded, both in its pure
sense and in its relationship to science and technology. And yet we tend to think of the academic
content of our discipline (at least K-14) as essentially static. We know better, of course. When |
was a student, the list of important skills (necessarily paper-and-pencil skills, except for occasional
use of a slide rule) included calculation of square roots, interpolating in trig and log tables, and
polar and logarithmic graphing, along with others that subsequently disappeared from the
“standard” curriculum. It is very rare now to encounter a student who has ever calculated a
nontrivial square root by hand or who has ever seen a log table or a slide rule (never mind knowing
what to do with them). The non-Cartesian graphing techniques disappeared because the presumed
benefits were not commensurate with the intellectual demands of leaming how to do them (not to
mention the cost of special graphing paper). But now those techniques are back in our curricula
(or should be), because they have important conceptual content and modeling significance, and
because our modern technology makes them easy, cheap, and accessible to all.

So why do some of our colleagues continue to insist on advanced factoring techniques as a
prerequisite skill for calculus, when the original reason they were in the curriculum was to be able
to solve carefully contrived max/min problems? And why do we assume that essentially all of
single-variable calculus is a prerequisite for differential equations — or that the really important
techniques in differential equations are the purely symbolic ones? Any problem that has been
reduced to a button on an omnipresent calculator — such as square root, log function, max/min, or
graphical-numerical solution of a differential equation — can no longer be considered a difficult or
inaccessible problem. Now that many of these formerly difficult problems have been rendered
easy, we have to confront the fact that solving the problems does not imply understanding of the
conceptual content.

Much of our profession continues to resist research-based calls for curricular (and other)
changes, such as the NCTM Principles and Standards (NCTM, 2000). The current Standards are
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themselves the product of extensive debate, development of curricular materials, trial, research,
and revision since publication of the predecessor document in 1989. And yet many academic
mathematicians cannot conceive of a successful secondary curriculum that is not organized by
presumed precursor topics for calculus, organized into courses titled Algebra I, Geometry, Algebra
11, Trigonometry (perhaps in combination with, say, Analytic Geometry), and Precalculus.

The calculus reform initiative in the U.S. (see Roberts, 1996, Ganter, 2000) has more or less
coincided with NCTM efforts to reform school curricula and has been the driving force in reform
of collegiate curricula at all levels. Successes and failures of this initiative have to be viewed
against the backdrop of an established system in which the table of contents of a textbook was seen
as a complete description of a course. Thus, among the early “reformers” were some who saw
their task as grafting technology onto an unchanged (unchangeable?) syllabus. (We have already
noted in the preceding section the failure of these efforts to produce significant learning gains.)
Others saw their task as creating the next best-selling calculus textbook — or, in some cases,
grudgingly accepted commercial publication of a textbook as the primary means of dissemination
of their good ideas for reform. Only a relative handful of these curricular efforts ever made it to
commercial publication, and, for a number of reasons, only one (Hughes Hallett, et al., 2001) was
ever a true commercial success. Each subsequent edition of this work looks more “traditional” but
still retains the creative problems and other tasks that set it apart from a traditional text.
Meanwhile, the commercially successful traditional calculus books are taking on a more
“reformed” appearance without a significant change in real content or approach.

Over the next few years, and perhaps beyond, we will see growing use of the World Wide Web
for dissemination of innovative curricular materials, both commercial and free (or grant-
supported), bypassing the traditional publishers and enabling direct access to interactive materials
that cannot reasonably be reduced to print. One example of this is the Web publisher Math
Everywhere, Inc. (http:/matheverywhere.com/), an enterprise created by Bill Davis and colleagues
to market interactive courseware, including Calculus & Mathematica® (1994), one of the most
successful products of the calculus reform initiative. By “successful,” I do not mean in the
commercial sense — it’s not clear to an outside observer that Addison-Wesley’s marketing attempts
were ever successful. On the other hand, a number of the research studies cited by Tall, et al. (to
appear) compared C&M to traditional courses and found significant learning gains for the C&M
students. In addition to the “classic” C&M, the MEI Web site now offers a range of similar
courses, in various stages of maturity, addressing much of the lower-division college curriculum.

The Connected Curriculum Project (http://www.math.duke.edu/education/cep/), in which I am
a principal, is an example of free distribution (supported by a National Science Foundation grant)
of materials that grew out of an earlier calculus reform project (Smith and Moore, 1996), another
commercial failure for which the research studies generally showed significant learning gains. The
CCP materials are not entire courses — rather they are modular, interactive units that lead students
through important concepts and applications throughout the lower-division curriculum.

There are a number of free Web sites offering peer-reviewed college-level curriculum materials

in a variety of disciplines, including mathematics. Among these are the Mathematical Sciences
Digital Library (MathDL, http://www.mathdl.org/), MERLOT (http://www.merlot.org/), and
iLumina (wwyw.ilumina-dlib.org/). 1 am affiliated with the first of these — an NSF-funded project
of the Mathematical Association of America — as Editor of the Journal of Online Mathematics and
its Applications (JOMA, hup://www.joma.org/). JOMA is a peer-reviewed academic journal that
includes, among other things, high-quality, innovative, and class-tested curricular materials, as

well as user and research articles about these materials.



5. Pedagogy

The NRC study (Bransford, e al., 1999), while extensive, does not encompass all of the
important research threads in the study of higher education. For example, researchers in Scotland,
Australia, and Sweden (Entwistle and Ramsden, 1983; Entwistle, 1987; Ramsden, 1992; Bowden
and Marton, 1998) have studied student approaches to learning, with a focus on approaches that
lead to deep vs. surface learning. (See also Rhem, 1995.) Deep learning approaches are quite
different from surface learning approaches, and a given student — whatever his or her “learning
style” — may exhibit different approaches simultaneously in different courses. These student-
selected “coping strategies” are often influenced by expectations set by the instructor, consciously
or unconsciously.

In particular, surface learning is encouraged by

e excessive amounts of material to be covered,

¢ lack of opportunity to pursue subjects in depth,

¢ lack of choice over subjects and/or method of study, and

e athreatening assessment system.

On the other hand, deep learning — the organized and conceptual learning described in the NRC
study — is encouraged by

e interaction with peers, especially working in groups,

e a well-structured knowledge base with connections of new concepts to prior experience and

knowledge,

e astrong motivational context, with a choice of control and a sense of ownership, and

e learner activity followed by faculty connecting the activity to the abstract concept.

These are especially important aspects of pedagogy for those of us whose goals include
teaching mathematics to a much broader audience than just those who intend to replace us as
mathematicians. Notice in particular, the similarity of the “surface” list to the way many
mathematics courses are taught in many colleges and universities — with resuits that are almost
universally considered unacceptable. And notice also that the “deep” list comprises principles that
have been incorporated into all of the major “reform™ efforts of the past 15 years or so.

Much of the reform has been carried out with scant or no knowledge of research — in some
cases, even as the relevant research was under way. However, it is no accident that the strategies
we found empirically to be effective are the same as those that have been shown by research to be
effective. Perhaps the most significant aspect of the reform efforts has been the near-universal
realization that revision of curricula is not enough, that decisions about topics are not enough, that
inclusion of technology is not enough — that none of this matters unless our pedagogical strategies
are also effective.

6. Putting it All Together: Research, Technology, Curriculum,
Pedagogy

In a recent paper (Smith, 2001) I wrote about the Web-supported classroom environment in
which I have taught for the past three years. The courses I teach now are the product of what |
have learned over the past two decades about research on learning (in neurobiology, cognitive
psychology, and empirical educational studies), supported by modern computer technology,
carefully designed curricular and assessment materials, and active-learning strategies in and out of
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the classroom. My students and | benefit from Duke University’s commitment to quality
education in the form of an interactive Computer Classroom, Web delivery support via Blackboard
5.5, an extensive array of site-licensed software, and excellent staff support. Unfortunately, one of
the disadvantages of committing a classroom or course description to paper is that it quickly goes
out of date, expecially if Web resources are involved. There is an online version of my 2001 paper
at http://www.math.duke.edu/~das/essays/classroom/ in which I have kept the links to classroom
and course resources current.

Key features of my courses include

e articulated goals and assessments directed toward achieving the goals;

e a goal-setting exercise at the start of each term to give students a sense of common purpose

and joint ownership;

o weekly plans that spell out the objectives, activities, readings, and problem assignments;

e a carefully cultivated sense of community in which students see each other and me as
partners in their learning enterprise, not as competitors or adversaries;

e an online discussion board, plus easy access to e-mail for all course participants, to
facilitate the sense of community;

e a mix of in-class activities — lecture supported by online interactive “notes” in a computer
algebra file, informal group activities in teams of two to four (with or without use of a
computer), structured lab activities using Connected Curriculum Project materials, and
online use of resources from remote sites;

e challenging take-home open-book tests with all resources available;

o regular homework graded assignments on a weekly cycle, with a requirement that ail
submitted solutions be accompanied by a check and/or a correctness argument;

e campus-wide access to a computer algebra system (currently Maple® 7);

o use of every learning task as an assessment (formal or informal) for which feedback is
given, and conversely, use of every assessment as a learning opportunity;

¢ a non-threatening distributed grading system among a range of different activities, roughly
half with group grades and half with individual grades;

¢ a weekly electronic journal submission with a paragraph or two of reflection on the week’s
work;

e team projects with classroom presentation and multiple-submission papers;

e Web delivery of all important course documents and online submission of most student
work;

o emphasis on realistic or real-world problems that are meaningful to students on their own
terms and that serve as motivators and scaffolding for the mathematical concepts

Without my belaboring the point, the reader should find many points of contact between this
list of strategies and the research findings cited earlier.

To illustrate the construction and use of research-based materials, 1 will give one example of a
module (Moore, et al., 2001) that { use early in a multivariable calculus course. This moduie could
be used with any students who have had some exposure to polar coordinates, parametric
representations, logarithmic graphing, and the relationship between tangent lines and derivatives.

The module, which may be seen at the URL given in the References, starts with a background
page on spirals in nature, in particular, the spiral shell of the chambered nautilus (N. pompilius).
This page is linked to other sites for information about Aristotle, who studied gnomonic growth,
and D’Arcy Thompson, author of the 1917 classic On Growth and Form, from which some of the
content of the module is taken. There are also links to other sites with information about spirals in
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nature (seed patterns, nebulae, etc.) or related mathematical topics (Fibonacci numbers, evolutes of
curves, etc.). My observation has been that students seldom follow any of these links — that they
may do no more with the background page than look at the pictures, because it doesn’t appear to
contribute anything to completion of their assignment. However, part of the richness of the Web is
that one can provide alternate learning paths for those who choose to take them — and without
interfering with those who want to follow a straight line toward a specific goal.

The “business” of the module starts on the next page, where students are shown an enlarged
cross-section of the nautilus shell superimposed on a polar grid and are challenged to reproduce
the spiral shape. Their first step is to make a list of radial measurements (with a ruler), either on
the screen or on a printed version of the picture. Thus we start with a tactile activity that leads to
student ownership of the data from which the model will be derived. Students then test their data
by logarithmic plotting for an exponential growth pattern, from which they can then derive a polar
formula, r = f{8) = 4€*’, and immediately test their model to see if the polar graph fits the data.
They don’t have to ask anyone “Is this right?” — they see immediately if they have made a mistake,
and they have to get the formula right before they can move on.

On the next page, students link polar plotting to parametric plotting via the polar-to-Cartesian
change-of-coordinate formulas and plot their spiral again in rectangular coordinates. They also use
this representation to zoom in at the origin and discover the self-similarity of the exponential spiral
— a rather different result from the local linearity they usually associate with “zooming in.”

Finally, students use the power of the computer algebra system (CAS) to explain the name
“equiangular” — that is, to show that the angle between radius vector and tangent line is constant.
This calculation involves calculus and algebra steps that only a few students would complete
successfully with pencil and paper. With the CAS, almost everyone can complete the calculation
and at the same time keep their focus on the mathematical concepts involved.

At the end of the lab activity, each student team completes their CAS-based report by
answering the following summary questions:

1. Describe in general terms the process of finding a polar formula from the radial

measurements on a seashell picture.

2. What happens when you zoom in at the center of an equiangular spiral? The behavior you

observed is called self-similarity. Explain the name.

3. What remains constant as r grows in an equiangular spiral?

Describe in geometric terms why the equiangular spiral has the name it has.
5. What is the shape of an equiangular spiral with B = a/2? How is this reflected in the
formula for r as a function of 8?2 How is it reflected in the relationship between p and k?

The last question asks about a case not previously encountered in the module — that in which
the “equiangle” B is a right angle and the “spiral” is a circle. Since the relationship they have
found is tan B = 1 / k, they have make sense of this formula when the left-hand side is .

This module illustrates design that takes students through at least one complete Kolb learning
cycle (see Wolfe and Kolb, 1984):

e Concrete experience: input to the sensory cortex of the brain in the form of seeing,

touching, moving — e.g., taking measurements;

e Reflection and observation: mainly right-brain activity, reinforced by use of previous

learning — e.g., logarithmic plotting);

e Abstract conceptualization: left-brain activity — e.g., finding the polar exponential growth

formula;
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e Active experimentation: often involves the motor brain, sometimes the sensory cortex as

well — e.g., testing the conceptual model against the reality of the data.

If the testing phase does not show complete success, the cycle may start over with the same
problem, now being viewed from a slightly enhanced knowledge base — at least with the
knowledge that something they thought would work in fact did not. When students achieve
success at one experimentation point, they are ready to move on to the next learning cycle.

This example links Kolb’s research on experiential learning to the neurobiological evidence
that deep learning is whole-brain activity (see e.g., Rhem, 1995, Zull, 1998).

7. Conclusions

Research studies on learning in general and on learning mathematics in particular (with or
without technology), together with my teaching and development experiences of the last two
decades, lead me to several conclusions:

1. Curricula need to be rethought periodically from the ground up, taking into consideration
the tools that are available. It is not enough to think of clever ways to present mathematics
as the content was understood in the mid-20" century, when the available tool set was quite
different, as was the intended audience.

2. Much of the effort that goes into curriculum design can be squandered if one does not also
rethink pedagogical strategies in the light of research showing the effectiveness of active-
learning strategies and distinguishing between good and bad ways to stimulate deep
learning approaches. It is not enough to adopt {(or write) a new book or even a new book-
plus-software package.

3. OQur tools for assessing student learning — whether for purposes of assigning grades or for
evaluating effectiveness of our curricula — need to be consistent with stated goals for each
course and with the learning environments in which we expect students to function. It is
not enough to continue giving timed, memory-based, multiple-choice, no-tech
examinations.

4. If we are serious about mathematical understanding for everyone with a “need to know” —
not just the potential replacements for the mathematics faculty — then we must plan our
curricula, pedagogy, and assessments for effective learning of the skill sets and mental
disciplines that will be needed by a mathematically and technologically literate public in
the 21 century. It is not enough to keep using ourselves as ‘“model learners.”

5. Revision of curricula, pedagogy, assessment tools, and technology tools will accomplish
little without concurrent professional development to keep faculty up to date with the
required skills, knowledge, attitudes, and beliefs. It is not enough to continue acting as
though an advanced degree in mathematics is evidence of adequate preparation to teach.
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A HUMAN ACHIEVEMENT: MATHEMATICS WITHOUT BOUNDARIES

Prof. Dr. Tosun TERZIOGLU
Sabanci University

Istanbul, Turkey

Keywords: Mathematical concepts, history of mathematics

After suffering a series of defeats in battles against Napoleonic armies, Prussia decided to
reform, amongst other things, its system of education. This work was entrusted to Wilhelm von
Humboldt, who was appointed as the head of department of culture and education of the
kingdom. During the eighteen months at this post, von Humboldt completely reorganized the
school system of Prussia and wrote the charter of a new university. This university was called
Berlin University: It enrolled its first students in 1810 and operated in a royal mansion donated
by the King of Prussia.

The charter of Berlin University was revolutionary and it was based on three fundamental
principles dictated by von Humboldt. The first was the inseparable unity of education and
research. According to von Humboldt, research activity was what distinguished a university from
other institutions of education. In Berlin University all subjects were present from philosophy to
natural sciences, from medicine and engineering to arts and religious studies. University
professors and students were constantly engaged in research, accepting no theory or idea as
given, without subjecting it to critical reasoning,.

The second fundamental principle concerned academic freedom. Berlin University was to be
an arena of intellectual freedom. Activities of the university were to be conducted without any
influence or interference of external sources of authority. This principle was summarized in the
German motto “Lehrfreiheit und Lernfreiheit”.

Students in Berlin University were obliged to have a fundamental education in natural
sciences, philosophy and humanities in their first years before specializing in their degree areas.
This was the third fundamental principle of von Humboldt. Wilhelm von Humboldt himself was
a philosopher and a linguist. He knew thirty languages. It was von Humboldt’s hope that the
graduates of Berlin University would be first and foremost universal intellectuals and propagators
of enlightenment. This was in direct contrast to the new French institutions of higher education
whose mission was to educate expert professionals who were also good citizens of France.

The new model of Berlin University was received enthusiastically by other German
Universities. Although universities in other European countries did not altogether take Berlin
University as a blueprint, the fundamental principles set forth by von Humboldt were acclaimed
by many. It was in the United States that von Humboldt’s principles were widely adapted as the
basic philosophy of higher education. Von Humboldt had hoped that in the new universities
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modelled on his fundamental principles, a unified grand theory of knowledge would develop by
time, transcending all national or geographical borders. With a common culture based on similar
general courses taken in the first years of their universities, the age of enlightenment would
produce a new generation of professionals, who would also be intellectuals equipped with all
tools necessary for critical thinking, refuting all dogma and bigotry.

However this did not happen - history took a different turn: Europe entered a phase of rapid
industrialization and formation of strong nation states, creating new rivalries. The industry
needed workers willing to do the same simple manual work for long hours at low wages. The
state needed loyal and obedient citizens, who would heed a call to arms without hesitation
whenever this was considered necessary by the government.

There was definitely a need for experts -engineers, doctors, and so on- but there was almost
no “Lebensraum” for independently minded intellectuals who would not automatically hate the
designated enemy of the state.

At the beginning of the new millenium, we are somewhat caught between two main currents
of historical events. Or rather, there is one main current, that of globalization and some strong
reactions to globalization which can form a strong coalition of opposition. There are also those
who think that mankind cannot do without the devil, which has to be invented if there is none
readily available.

Yet the alteration of geographic borders, fear of clash of civilizations, globalization, anti-
globalization may well be temporary trends here today and gone tomorrow, belonging to the
world that we see on the surface, the world where ideas are limited by boundaries of the widest
variety. To the erring person who imagines the true world to be just a reflection of what he sees,
everything is bound to appear like a seemingly endless, unproductive tug-of-war.

Yet below this surface is another world, the world of the infinite, where progress is always in
a steady forward direction. In this world there can be no notion of “the shortness of the human
life span” or even “time”; definitely no notion of material gains, for each idea is a drop that will
expand within the never-ending flow that endures beyond centuries and milleniums. This may be
why we mathematicians are perhaps among those people who can sense the true meaning of the
word “infinite” in the most acute way.

Mathematics is a precious human achievement. It transcends boundaries of all kinds -
geographical, historical, national, philosophical or linguistic. Mathematics is accumulative and
ageless. Whenever 1 give the proof of Euclides that there are infinitely many primes, 1 ask my
students to conduct a survey of the physics or astronomy of that period in history, and to compare
it with what we know now. The proof attributed to Euclides is still valid today. Furthermore, 1
hope that it gives at least to some of my students as it does to me, a sense of aesthetic pleasure,
whereas the model of the universe by Ptolemy, although at its time of formulation considered a
masterpiece, is actually not only false but also quite naive.

Mathematics is full of true masterpieces. It is through the use of accumulation of the
masterpieces of mathematics that scientists understand nature much better today than even just a
century ago. We have developed means of harnessing the forces of nature for the benefit of
humanity. What we describe as “high technology” has its roots in some field of mathematics.
Today we use mathematics more widely than ever. Mathematics is and has always been a part of
our common heritage, a part of the common wealth we share. We mathematicians do not patent
our theorems, but publish them so that everyone can use them, criticize them or even prove them
false.
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To teach mathematics in the general context of humanities, I propose a course or a series of
courses highlighting some concepts of mathematics, interplay between the concrete and the
abstract and between heuristic arguments and formal proofs. Let me try to illustrate by means of
some sketchy examples: Assuming that our students know basic arithmetic, one could define
prime numbers and prove the prime factorization theorem that there are an infinite number of
primes. We can then continue to discuss the twin prime problem and the Goldbach conjecture.
For a more advanced class one can describe some of the futile attempts to obtain a formula giving
all primes, and even include a discussion of some of the heuristic arguments making the
conjecture that there are an infinite number of twin primes plausible. A discussion of the use of
big primes in cryptography would bring us to today, from our starting point which was around
300 BC.

Another line of advance could start from utilitarian geometry and how it was formalized in the
Elements. This masterpiece deserves certainly some attention, especially as the first example of
the axiomatic approach and rigorous proofs. The fifth postulate could be discussed at some depth.
One could also deal with the systematic approach of Appolonius to the conic sections and jump
to Kepler’s laws and maybe mention Newton’s discovery of the gravitational force. Another path
could take us to different geometries motivated certainly by the fifth postulate. In this discussion
of geometry one could display how the Elements survived until the modern times, transmitted
from one civilization to another through translations from one language to another, written on
papyrus, parchment, “in palimpsest” and on paper.

A more ambitious project would be to take up the abstract notion of a group and illustrate the
wide range of applications that is hidden in this simple algebraic structure. Even if briefly, one
could touch upon Galois groups and how one can prove the impossibility of the trisection of an
angle using compass and ruler only. Symmetry and ornaments can also be discussed in this
context. A short discussion of Klein’s Erlangen program would demonstrate the link between
algebra and geometry.

These are just the initial thoughts that spring to my mind within the framework of what I
know as a 20" century mathematician — within time and the fertility of the human imagination,
naturally new projects will be produced, existing projects will change form. However, we know
from the history of mankind that in the land of the infinite, no idea or project —however
incomplete it may be- goes wasted, if it is of any value: Sooner or later, it is bound to sparkle
someone else’s imagination -be it in another geography or another century- and in the end, turn
into a sturdy brick contributing to the beauty of the magnificent joint product of mankind of all
ages -immortal and transcending all worldly matters.

If education is to make a significant contribution to our future, I believe it must stress much
more the achievements of humanity, not only in technology, health or natural sciences, but also in
humanities in general.

We should strive to increase the awareness of our young people, that throughout history we
have created a tremendous amount of human wealth — in music, literature, architecture, philosophy
and in mathematics. These human values, when taught properly, will infuse a new sense of pride
and confidence in ourselves, a new hope for a better and peaceful life on our planet. We should
revise the unfulfilled dream of von Humboldt and try to make it come true.
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Panel “On the role of the history of mathematics in mathematics
education”

Fulvia FURINGHETTI (Coordinator)
Department of Mathematics, University of Genoa, Italy

ABSTRACT

In recent years, important works on the relationship between history and mathematics
education have appeared:

(a) The Proceedings of the “European Summer University on History and Epistemology in
Mathematics Education” (Montpellier, France, 1993, Braga, Portugal, 1996, and
Leuven/Louvain-la-Neuve, Belgium, 1999),

(b) Two books based on the elaboration of papers which were presented during the satellite
meetings of HPM (History and Pedagogy of Mathematics, one of the ICMI affiliated
international groups), the first edited by R. Calinger (MAA 1996), and the second edited
by V. Katz (MA A 2000), .

(c) The ICMI Study book on “History in Mathematics Education”, edited by J. Fauvel and 1.
van Maanen.

(d) Journals for Mathematics Teachers and/or Mathematics Education Researchers have
published special issues on the History of Mathematics in Mathematics Teaching (e.g. For
the Learning of Mathematics in 1991, Mathematics in school in 1998 and Mathematics
teacher in 2000). The re-born newsletter of HPM (International Study Group on the
Relations between History and Pedagogy of Mathematics) is becoming (we hope) a forum
where piece of information and ideas are shared.

These material and the experiments carried out all over the world make further discussion on
the role of the History of Mathematics in Mathematics Teaching both possible and necessary. In
recent discussions the expression “integration of History in Mathematics Teaching” appears
frequently. Which ideas are behind this expression? The main idea is that of using History as a
mediator to pursue the objectives of Mathematics Education. This means that, these objectives,
together with the study of the historical evolution of concepts should be analysed. This work has to
be carried out by educators and historians in a collaborative way. Among the benefits, which are
expected to result from this work, is the new perspective offered by History to consider students’
difficulties in learning Mathematics. To make teachers active actors in this process we need to give
a convenient place to the History of Mathematics in pre-service and in-service teacher education.

Members of the Panel:

-Abraham Arcavi, Department of Science Teaching, Weizmann Institute of Science,
Israel.

-Evelyne Barbin, IUFM de Créteil, France

-Fulvia Furinghetti, Department of Mathematics, University of Genoa, Italy.

-Man-Keung Siu, Department of Mathematics, University of Hong Kong, Hong Kong

SAR, China.
-Constantinos Tzanakis, Department of Education, University of Crete, Greece.
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ABSTRACT

In recent years important works on the relationship between history and mathematics education have
appeared. Some of them, such as the proceedings of the European Summer Universities in History and
Pedagogy in Mathematics education, the HPM satellite meetings of ICMI Conferences, the French
publications of IREM, are evidence of rather regular activities in the field. The re-born newsletter of HPM
(International Study Group on the Relations between History and Pedagogy of Mathematics) is becoming
(we hope) a forum where piece of information and ideas are shared.

These materials and the experiments carried out all over the world make it possible to go further in the
discussion about the role of the history of mathematics in mathematics teaching. In the recent discussions a
word is appearing frequently: integration [of history in mathematics teaching]. What behind this word? The
main idea is that of using history as a mediator to pursue the objectives of mathematics education. This
means to develop an analysis of these objectives together with the study of the development of concepts in
history. This work has to be carried out by educators and historians in a collaborative way. In the present
paper we show how the preceding ideas may be applied in introducing a concept of infinitesimal analysis.
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1. Introduction

In the recent years important works on the relationship between history and mathematics
education have appeared. Often they are the results of initiatives particularly addressed to teachers,
such as the proceedings of the European Summer University (held in 1993, 1996, and 1999). Other
times they are the output of meetings among researchers (historians, mathematicians, educators),
such as the two books originated by the HPM satellite meetings of ICMI conferences (1996 editor
R. Calinger, and 2000 editor V. Katz), the ICMI Study book edited by J. Fauvel and J. van
Maanen (2000), the book Learning from the masters! edited by F. Swetz, J., Fauvel, O., Bekken,
B., Johansson, & V. Katz (1995), the proceedings of the Brazilian meetings Encontro Luso-
Brasileiro de histéria da matemdtica & Seminario Nacional de histéria matemdtica, the book
History of mathematics and education: ideas and experiences edited by H. N. Jahnke, N., Knoche
and M. Otte (1996),

Journals for mathematics teachers have published special issues on the history of mathematics
in mathematics teaching (e.g. For the learning of mathematics in 1991 and 1997, Mathematics in
school in 1998 and Mathematics teacher in 2000).

Particularly impressing is the net of publications (mainly in French) edited by the French
University Institutes for teacher education (IREM): they constitute a kind of common thread in the
development of the subject “The history of mathematics in mathematics education”.

The Newsletter of HPM (International Study Group on the Relations between History and
Pedagogy of Mathematics, affiliated to ICMI) informs three times a year the readers about a range
of initiatives (conferences, meetings, exhibitions) and publications concerning the history of
mathematics in mathematics education.

Eventually I like to point out the importance of the new information and communication
technology in establishing a new relationship with history, especially for those people as teachers,
who had difficulties in finding the suitable materials. As illustrated in (Barrow-Green, 1998), the
access to historical sources, to biographical information and references is now more available than
in the past to everybody.

In the publications that I have mentioned we may find attempts of answering the central
question “What is the role of the history of mathematics in mathematics education?”. This
question may be split into more focused sub-questions:

« which educational benefits are introduced by the history of mathematics?
« which teaching strategies are to be applied?
« how mathematics teachers are prepared to this introduction?

In theory, these issues are the same as those faced by researchers in mathematics education or
curriculum developers when introducing innovations in nathematics teaching. I am thinking, in
particular, at the introduction of information and communication technology. I may explain this
similarity reminding the view of historiography as a “literary artifact” expressed by Hayden White,
as reported by Eco (1994, p.161). Extending this concept we may say that as the technology,
history too is an artifact which intervenes in teaching. As an artifact it may play the role of
mediator in the process of teaching/learning. Of course in these similarities there are dfferences
specific to the specific object of study, but at a first level we may take the plan in Fig.1 as the
common path when using different mediators (e.g. history, technology).
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Figurel. Plan for the implementation of a teaching sequence

In the case of history the striped zone has to be specified according to the plan of Fig.2.

browsing text on history
of mthematics

singling out the
passages/the authors

going to original
sources

preparing the
materials for the
project

Figure 2. Plan for introducing the history of mathematics in a teaching sequence

Of course, there are variations to this plan such as going directly to the sources, if one has a
suitable knowledge of the history of mathematics. The point is that the choice of passages/authors
(striped zone of Fig.2) has to be carried out in the light of the educational needs.

2. An example

I give an example of this way of working by outlining the features of a project on which I have
worked myself with two secondary teachers. The subject was the introduction of derivative. Our
main concern was the poor concept images held by undergraduate students. To focus on the
elements that may intervene in the formation of this concept image we designed a questionnaire
addressed to students. The questionnaire consisted of 14 questions related to the derivative, each
question containing four options plus an option allowing comments. The full work is reported in
{Boggiano, Furinghetti & Somaglia, submitted). The questionnaire was given to the students of the
scientific lycei of Genoa (big town) and two little towns near Genoa. All together we analyzed 434
questionnaires. The findings show that the students answer in a satisfying manner when they resort
to prototypes, but fail in facing new situations. Moreover the questions containing graphics bring
to light the weakness of concept images held by students, since graphics require an active and
aware construction of mathematical objects. Also it emerges the students’ weakness in passing
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from the algebraic to the geometric domain and vice versa. We may say that derivative is one of
the mathematical object to which students connect manipulation of formulas, but not mathematical
meaning.

Thus the problem is to recover the mathematical meaning. The plan illustrated in Fig.3, taken
from (Furinghetti & Somaglia, 1998), shows the steps we use to bridge the gap between informal
and formal mathematics.

to work at an informal level using
colloquial language, graphical
representations, diagrams to rouse
pupils’ “intuitive ideas’ on a certain
concept

IS

1o exploit pupils’ ‘intuitive ideas’
roused in the preceding stage o
outline the main features of the

concept

to introduce the

mathematical
formalization of the /

concept

Figure 3. Steps from informal to formal mathematics

To make students work at an informal level before tackling a given topic formally allows the
reification of concepts. Sfard (1994) ascribes a central role to the birth of metaphors, as explained
in the following passage .
If the meaning of abstract concepts is created through the construction of appropriate
metaphors, then metaphors, or figurative projections from the tangible world onto the
universe of ideas, are the basis of understanding. [...] the leading type of sense-rendering
metaphor in mathematics is the metaphor of an ontological object. (p.5)
For us to work at the informal level means © work in a world which is close to the students’
experience, i.e. the “tangible world” mentioned by Sfard. My position is in line with Freudenthal’s
ideas on the efficacy of context problems as an opportunity to let formal mathematics emerge. As
explained in the paper (Gravemeijer & Doorman, 1999), context problems have to be intended in a
broad sense as “problems on which the problem situation is experientially real to the student”
(p-11D).

In this framework to use history may reveal itself fruitful and sense-carrier. In our project it
was considered the pioneering period at the beginning of calculus, where the roots of the
mathematical entities in the world of material objects are more visible. The tangent line to a curve
was taken as the first step in the construction of the derivative. Other authors have tried this way,
see, for example, (Grégoire, 2000; Villareal, 1997).

Passages from original sources were proposed to the classroom. One was taken from
Observations sur la composition des mouvements et sur le moyen de trouver les touchantes des
lignes courbes by Gilles Personne Roberval (1602-1675). Already in 1644 Marin Mersenne
informed the scientific community about a method by Roberval to find tangents based on
kinematics. The manuscript containing the method was written by a pupil of Roberval (Du
Verdus) and presented to the Académie des Sciences by Roberval only in 1668.

The method holds if the kinematic generation of the curve is known, and thus only particular
curves may be treated with this method. The author assumes that the direction of the movement of
a point on a curve is the tangent to the curve in ahy position of this point. The parallelogram law
for the addition of constant velocity vectors was already known. Roberval applied this law to
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instantaneous velocity vectors. From the specific properties that define the curve Roberval finds
the components of the movement and afterwards the tangent as the composition of them, see Fig.4.
A discussion of the Roberval’s method may be found in many texts, see, for example, (Edwards,
1979).
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Figure 4. Kinematic construction of tangents (Roberval)

There are two aspects of the chosen extract that make it close to the ideas about the use of history
that I explained before: geometry and movement. Both these aspects are part of students’
experience: geometry mainly belongs to school experience, movement to everyday experience.
The construction may be applied to other curves. We have chosen the second order parabola, since
we wish that students work on a well known curve, applying its definition in an operative way.

The passage by Roberval was available in Italian in a reliable translation taken from one of the
few readers published in Italian (Bottazzini, Freguglia, Toti Rigatelli, 1992). Thus we bypassed the
problem of translation, which is one of the main problems in using the history of mathematics in
teaching. Jahnke et al. (2000) distinguish at least two types of translation:

translation into modermn mathematical language, and translation from one language into
another. While the former serves in particular to reconstruct a mathematical argument, the
latter has promising educational advantages insofar as it initiates students and trainees into
mastering a language and to conceptual analysis. (p.316)
Usually to have to deal with a foreign or dead language (Latin, Greek) is a great difficulty which
takes teachers away from using history.

3. Conclusions

I have outlined the basic ideas that I see behind the use of history in mathematics teaching. To -
simplify my discussion I made the choice to skip the big problem of teacher education in history.
I’m aware that this problem exists: it is not by chance that a full chapter of the ICMI Study on the
use of the history in mathematics teaching is devoted to this subject (Fauvel & van Maanen, 2000).
As far as I know the related problem of teachers’ attitude is less investigated, see (Philippou &
Christou, 1998). I think that the discussion on my model may be a starting point both to encourage
teachers to approach history as a mediator in their work and to make plans for teacher training
(pre-service and in-service).
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Panel ICMI Study on The Teaching and Learning of Mathematics at
Undergraduate Level

Derek HOLTON (Coordinator)
University of Otago, Dunedin, New Zealand

ABSTRACT

A short history of the Study will be given to set the background for a deeper discussion of
three of the main areas of the Study.

Educational Research: One of the goals of the Study was to determine what educational
research carried out at this level of formal education had to offer; to evaluate the researches
potential to help us understand tetter the observed problems and to offer strategies for tackling
these; and to identify the current limitations of research and suggest orientations for its future.

Practice: Recent changes in undergraduate mathematics teaching have been in response to
external factors that impinge on the teaching of the discipline, as well as a result of different
epistemological views of mathematical learning. Several innovative teaching approaches were
highlighted in the Study. These include new approaches to teaching topics of a traditional
curriculum, as well as attempts to redefine the nature of undergraduate mathematics teaching and
learning,

Technology: Innovations in this area affect both curriculum and pedagogy. Much of the
Technology area of the Study centred on the use of technological tools for supporting students
leaming, particularly via visualisation, computation, and programming both during and after
formal lecture time. Consideration was given to technologies potential to foster more active
learning, to notivate explanations of surprise feedback, to foster co-operative work and to open a
window on students thought processes.

Members of the Panel.

- Michéle Artigue, Université Paris 7, Paris, France

- Derek Holton, University of Otago, Dunedin, New Zealand
- Joel Hillel, Concordia University, Montreal, Canada

- Alan Schoenfeld, University of Berkeley, California, USA
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Panel: ICMI Study on The Teaching and Learning of Mathematics at
Undergraduate Level

Michéle ARTIGUE, Université Paris 7, Paris, France
Joel HILLEL Concordia University, Montreal, Canada
Derek HOLTON, University of Otago, Dunedin, New Zealand
Alan SCHOENFELD, University of Berkeley, California, USA

1. Introduction

The Study began in 1997 with the first meeting of the International Prog ramme Committee.
Their Discussion Document appeared in the ICMI Bulletin of December 1997. Somewhat
surprisingly, we completed on time, all the Study goals outlined on the timeline and, in addition,
produced an extra publication (marked with an asterisk below). The main items on the timeline
were

e December 1998: Study Conference, Singapore;

e Special issue of the International Journal of Mathematical Education in Science and
Technology, Volume 31, No. 1, 2000%,

e Presentation of main findings 2000, ICME-9, Makuhari, Japan;

e Study Volume, The Teaching and Leaming of Mathematics at Undergraduate Level, Kluwer
Academic Publishers, Dordrecht, 2001.

We list below some of the main questions raised in the Discussion Document.

e  What research methods are employed in mathematics education? What are the major research
findings of mathematics education?

e Are the educational theories that are relevant at school level, relevant at university level as
well?

e What do we know about the learning and teaching of specific topics such as calculus and
linear algebra?

e What alternative forms of assessment exist? How can assessment be used to promote better
learning and understanding?

e  What are the effects of the use of technology in the teaching and learning of mathematics?

e To what extent do potential teachers of school mathematics, scientists, engineers, etc., need
specially designed courses?

e  What changes are, or should be, taking place in the curriculum?

Most of the questions raised were discussed in the two publications that have arisen form the
Study. We take up issues related to mathematical research, practice and technology for this panel.
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2. Educational Research

Some of the goals of the Study were to determine what educational research carried out at this
level of formal education had to offer; to evaluate the research’s potential to help us understand
better the observed problems and to offer strategies for tackling these; and to identify the current
limitations of research and suggest orientations for its future.

Research in mathematics education carried out at the university level helps us better
understand the leaming difficulties our students have to face, the surprising resistance of some,
and the limitations and dysfunction of some of our teaching practices. Moreover, in various cases,
research has led to the production of teaching designs that have been proved to be effective, at
least in experimental environments. It has also been the source of specific theoretical frames. This
is well evidenced by the section 3of the ICMI Study Book and elsewhere. But the Study also
shows that the research carried out up to now has been restricted in its cover. For instance, efforts
have been concentrated on a few areas of the subject and on the training of future mathematicians
or teachers. The Study also shows that, up to now, the influence of research on university
teaching remains quite limited. This phenomenon cannot only be explained by the limitations of
current research noted above and the Study allows us to better understand this limited impact. For
instance, it shows us to that we are unlikely to get substantial gains without more engagement and
expertise from teachers and significant changes in practices. One essential reason is that what has
to be reorganised is not only the content of teaching but more global issues such as the forms of
students’ work, the modes of interaction between teachers and students, and the form and content
of assessment. This is not easy to achieve and is not just a matter of personal good will. Another
crucial point is the complexity of the systems in which learning and teaching take place. Because
of this complexity, the knowledge that we can infer from educational research is necessarily
partial. The models research can elaborate are necessarily simplistic ones. We can leamn a lot even
from simplistic models but we cannot expect that they will give us the means to really control
didactic systems. As evidenced by the Study, the current links between research and practice do
not allow research to play the role it could play. Improving these links is a necessity but has not to
be considered as the sole responsibility of researchers. It is the common task of the whole
mathematical community. ‘

3. Practice

Recent changes in undergraduate mathematics teaching have been in response to external
factors that impinge on the teaching of the discipline, as well as a result of different
epistemological views of mathematical learning. Several innovative teaching approaches were
highlighted in the Study. These include new approaches to teaching topics of a ‘traditional’
curriculum, as well as attempts to redefine the nature of undergraduate mathematics teaching and
learning,

A fairly accurate picture of current undergraduate mathematics is that, by and large, it is still
dominated by the ‘chalk-and-talk’ paradigm, a carefully selected linear ordering of course
content, and assessment which is heavily based on a final examination. Even the highly
publicised ‘computer revolution” has not really made a sweeping impact on mathematics. The
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agenda is still basically defined by pure mathematics and one can reasonably claim that as long as
the primary goal of mathematics education is conceived in terms of preparing future professional
mathematicians, existing curricula function optimally if they just keep abreast of new
developments within mathematics. Nevertheless, there are many calls from the general scientific
community and professional associations of mathematicians and users of mathematics, to
overhaul undergraduate mathematics education. This overhaul might include: goals,
epistemology, learning styles, motivational issues, technology, and breadth of training.

In practice, it turns out that actual trends tend to be more modest and depend very much on the
contexts and goals of the institutions involved. Changes are most discernible in departments that
consider the goal of training future mathematicians as being too narrow, too expensive, or simply
unrealistic in terms of who is actually enrolled in their programmes. Rather, they see their goals
nowadays as being both academic and vocational. Certain trends however, can be seen. These
include:

e Some departments are becoming more explicit about their aims and objectives for courses
and for programmes as well as in describing a desired ‘profile’ of a student completing each
of their programmes.

o There is a general trend towards reducing the mathematical content of courses, both for
programme and client students.

o There is also an increased emphasis on applications and computer simulations both in main-
stream mathematics courses and in courses targeted for client students.

o The transition problem from secondary to tertiary level has led to the appearance of bridging
courses aiming to facilitate students’ entry into university mathematics.

o The one-maths-course-for-all model is giving way to customised courses for different
clientele.

¢ Though assessment is still dominated by the end-of-year exams there is 2 move towards a
more varied assessment based on projects, weekly tests, essays, report writing, and seminar
presentation, and group projects.

¢ Joint degrees, traditionally in mathematics and physics, have now given way to degrees such
as mathematics and finance, mathematics and ecology, mathematics and information
technology.

4. Technology

Innovations in this area affect both curriculum and pedagogy. Much of the Technology area
of the Study centred on the use of technological tools for supporting students’ leaming,
particularly via visualisation, computation, and programming both during and after formal
‘lecture’ time. Consideration was given to technology’s potential to foster more active learning,
to motivate explanations of ‘surprise’ feedback, to foster co-operative work and to open a
window on students’ thought processes.

A range of questions was raised by the working group on technology. Some of these
questions are listed below. They were discussed to various degrees in the Study volume.
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How can you use technology to teach theoretical concepts?

Does current literature make convincing arguments for using technology?

How should the curriculum be reorganised to make effective use of technology?

How does technology change mathematics (what is considered mathematics, how it is done)?

How do we characterise teacher-student interactions with technology (the Intemet,
calculators, computers)?

Should we focus on the current curriculum and how to integrate technology into it or should
we consider what the mathematics curriculum could be now we have technology?

How do we manage computers and calculators efficiently in the classroom?

What strategies (e.g., starting with a black box and exploring) do we have for using
technology to teach mathematics?

How do we design technology and build it into the curriculum?
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Panel Why School Mathematics matter: A Cross-Country (TIMSS)
Examination of Curriculum and Learning

William SCHMIDT (Coordinator)
College of Education,
Michigan State University USA

ABSTRACT

We will present TIMSS data examining the relationship of curriculum to mathematics
learning at the eighth grade. Data from 31 countries will be used to explore through formal
statistical modelling the relationship among the three aspects of curriculum and learning. The
four aspects of curriculum include measures of a country's content standards, textbook
emphases, emphasis on the more complex cognitive demands of materials and the time
allocations of the teachers. The dependent variables in the analyses are the gain scores in
twenty specific topic areas such as congruence and similarity; functions; and 3-D geometry.
By using gain scores the analyses focus on the mathematics that was learned during eighth
grade, which then is related to the measures of the eighth grade curriculum. The patterns and
relationships that emerge are discussed from a mathematics point of view. A panel of
mathematicians from several countries will then discuss the implications of theses results both
generally and in terms of the perspective of their own countries.

Members of the Panel:

- Johann Engelbrecht, University of Pretoria, South Africa
- Curtis McKnight, University of Oklahoma, USA

- Oh Nam Kwon, Ewha Women's University, Korea

- William Schmidt, Michigan State University USA

- Tosun Terzioglu, Sabanci University, Turkey
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Panel “Mathematics Is For All”

Coordinator: William Yslas Velez, Professor of Mathematics and University
Distinguished Professor, Department of Mathematics,
University of Arizona, Tucson, Arizona, USA

ABSTRACT

As mathematicians we believe that mathematics is useful, beautiful, and necessary in order to
address the scientific problems that society confronts. We would all like to have a citizenry that
is mathematically literate. Yet, many of us ®mplain about the small number of students who
choose to study mathematics in college or to choose mathematics for their major. Interestingly,
there have been considerable efforts at increasing these small numbers and these efforts have
been directed at sections of the population that have not historically participated in the
mathematical enterprise. The purpose of this panel is to learn about these efforts and how to
integrate these efforts into the culture of a university mathematics department.

Every country has “minority” populations that do not participate fully in the mathematical
enterprise in that country. Minority populations oftentimes have to overcome more barriers than
the majority population, barriers that stand in the way of the full expression of latent
mathematical ability. These barriers take on many forms. Preparatory schools may not fully
prepare students for the rigors of a university curriculum. The lack of financial resources is a
common impediment. Social structures may prohibit the consideration of a mathematical career.
The lack of knowledge about mathematical careers certainly plays a factor. Perhaps even the
organizational structure of the university should factor in. One of the goals of this panel is to
explore these impediments.

Concern for these under-represented groups sometimes results in special efforts or programs
to address this inequity. These special efforts and programs are designed to encourage minority
populations to gain access to mathematical careers. In many instances, minority mathematicians
have led the efforts and have devoted a considerable portion of their careers in an effort to
provide better access to the under-served. The mathematical community can learn a great deal
about increasing access to mathematics by looking at minority programs. Efforts aimed at
improving access for minority populations can also increase access for all students, and that is
another goal of this panel.

A common dictum in the United States is that “Mathematics is for all”. It is the goal of many
pre-college programs in the U.S. to have all students complete a solid program of study in
mathematics, one that will prepare them to pursue a mathematically based career in college.
When we look at the professorate in mathematics departments at our research universities in the
U.S., it is abundantly clear that the professorate is not representative of the U.S. population. The
phrase, “mathematics is for all”, does not appear to apply at the level of university professor of
mathematics. The percentage of women is nowhere near equity. Historically, there were three
main minority groups in the U.S. African-Americans, Mexican-Americans and Native
Americans. These minority populations are almost invisible among the professorate at research
universities in the U.S.
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This panel will provide the opportunity to learn about these special efforts to increase the
participation of minority populations in mathematics. Panelists will be invited to provide
examples of the work that they have done to increase the accessibility, for minority groups in
their countries, of mathematics and mathematics-based careers. Examples will be chosen that
will give full evidence that these efforts have a broader appeal and, when incorporated into the
way a mathematics department functions, will serve to increase the interest in mathematics in
more students, not just minority students.

Members of the Panel:

- Megan Clark, Centre for Mathematics and Science Education School of Mathematical
and Computing Sciences Victoria University, Wellington, New Zealand

- Cyril Julie, School of Science and Mathematics Education, University of the Westem
Cape, South Africa

- William Yslas Velez, Department of Mathematics University of Arizona, Tucson,
Arizona, USA

! Members of the panel at the time of publication (April 2002).
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CONVEX SETS AND HEXAGONS

Ji GAO
Department of Mathematics, Community College of Philadelphia
1700 Spring Garden Street, Philadelphia, PA 19130-3991

e-mail: jgao@ccp.cc.pa.us

ABSTRACT

Euclid presented his fundamental results about 300 B.C., but Euclidean Geometry is still
alive today. We studied the new properties of convex sets and its inscribed hexagons in a two
dimensional Euclidean space. As an application, these results solved a question in Geometry
of Banach Spaces. From my teaching experience at Community College of Philadelphia, I
think the material is reasonable and suitable to be added to the Linear Algebra course and/or
Functional Analysis course. It may encourage others to know that the tools we give our
students remain useful in modern research.
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1 Introduction

In [1], we used elementary geometry to discuss the properties of the rhombi inscribed
in the unit circle C' of a two dimensional normed vector space, and proved that the
well-known property from Euclidean geometry, namely that every rhombus inscribed
in unit circle C has sides of C-length v/2, does not characterize the Euclidean space.
The result is that if the curve C of unit vectors is invariant under rotation by 45°,
then every rhombus inscribed in C' has sides of C-length v/2. In the first part of this
paper we still use elementary geometry to discuss the properties of so-called normal
hexagons inscribed in the unit circle C of a two dimensional normed vector space, and
we consider another well-known property from Euclidean geometry, namely that every
normal hexagon inscribed in an unit circle C' has side-medians of C-length -? However,
we also prove that this property does not characterize the Euclidean space either. By
using the term side-median for a polygon inscribed in the unit circle C' of a normed
vector space, we mean the median of the triangle with the origin as a vertex and a side
of the polygon as base. In the second part of this paper, which is an appendix, we
present more properties of rhombi inscribed in the unit circle C' we discussed in [1].

2 Inscribed Hexagons

As we have already shown in [1]: we can use any bounded convex set which is sym-
metric with respect to the origin and contains the origin as an interior point in a two
dimensional Euclidean space to define a new norm. On the other hand, the unit disk
of any normed vector space is a bounded convex set which is symmetric with respect
to the origin and contains the origin as an interior point.

Definition: A hexagon in a normed vector space with unit circle C is called a normal
hexagon if it has six sides of same C-length, and each pair of opposite sides are parallel.
The normal hexagon is called a unit normal hexagon if it has six sides of C-length 1.

The unit circle of the standard Euclidean space E? is a standard circle, and there
is unique regular hexagon inscribed in the standard circle with a given point on the
standard circle as the one of its vertices. From [2], for any invertible matrix A we can
define an inner product on E? by < z,y >= Az - Ay, and every inner product arises in
this way. Under the linear isometry £ — A~1z, the image of the standard Euclidean
unit circle is the unit circle C of unit vectors with respect to the inner product, which
is an ellipse, and the image of any regular hexagon inscribed in the Euclidean circle
1s a normal hexagon inscribed in this ellipse C. Since the unique regular hexagon in
the standard Euclidean circle has sides of Euclidean length 1, and six side-medians of
Euclidean length -?, it follows that the unique normal hexagon inscribed in an ellipse
C with a given point as one of its vertices has sides of C-length 1, and side-medians of
C-length -?

The question is: does the property above characterize the Euclidean space? That is,
if a normed vector space has the property that every normal hexagon inscribed in C of
unit vectors has side-medians of C-length -?, does the norm arise by an inner product?

Observe that the two dimensional standard Euclidean space E? and a two dimen-
sional normed vector space with C' as its unit circle are set up in the same plane. In the
following, for a given vector z in the plane we use |z] to denote the general Euclidean
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length (in the Euclidean space) and ||z||¢ to denote the C-length (in the normed vector
space). Let K and C = OK be the unit disk and unit circle of the two dimensional
normed vector space respectively, then both K and C are symmetric with respect to
the origin, in addition K is a convex set with the origin as an interior point. So, ge-
ometrically the question above is equivalent to the following question: if a convex set
K, which is symmetric with respect to the origin and contains the origin as an interior
point (and therefore C' = 9K could be the unit sphere of some normed vector space),
has the pr\;)_perty that every normal hexagon inscribed in C' = 9K has side-medians of
C-length —23, must C be an ellipse in E? (Therefore C = 0K should be the unit sphere
of an Euclidean space)?

To answer this question we need the following results.

Let T be a tangent line of K, then TN K =T N C is either a single point or a line
segment with ||[T N K]||c = ||[TNC|lc < 2.

Lemma 1: Let x € C, T be the tangent line parallel to the vector z, and L be a line
parallel to z too. Then when L moves parallel from the position passing through the
origin towards T', the |[|L N K||¢ is non-increasing from 2 to ||T N K||c = ||T N C||c.
Furthermore, for any a, where ||T'N K||c = ||T N C||c € a < 2, there is unique u € C
and corresponding v € C such that vector u — v is parallel to z, and |ju — v||c = a.

Proof: Let L, moves parallel to L, towards T, and uy,v; € Ly NC,ug,v2 € LaNC
(see Figure 1). If |jug — va|lc > ||ur — wille, or ||ug — valc > ||ur — vi]|le < 2, then at
least one of u,,v; falls inside the trapezoid with vertices —z, z,uo, and vs.

This contradicts the convexity of K. Therefore ||uz — v3||c < ||ur — v1]|e, or when
lur = ville < 2,]lue — velle < |lu1 —uillc -

v/ \Tu2 L
SN,
/ \

- ) T

Figure 1:

Lemma 2: Let z € C, then there exists at least one normal hexagon inscribed in C
with = as one of vertices.

Proof: Let T be the tangent line to C, and parallel to z. If |[TNK||c = ||TNC||c <1
(see Figure 2), from lemma 1 we can take u,v € C, such that u — v is parallel to z, and
||lu — v||c = 1. From parallelograms with vertices u, v, 0, and z, and vertices u, v, —z,
and o, we have ||u — z||c = ||v||lc = 1, and ||v — (—=2)||c = ||u||c = 1. So, the hexagon
with vertices z,u, v, —x, —u, and —v is an inscribed normal hexagon.

From lemma 1 again there is unique u and corresponding v € C' such that u — v is
parallel to z, and ||u — v||c = 1. So, in this case the inscribed hexagon with z as one
of vertices is unique.

| TNKl|ec=|TNC|lc > 1 (see Figure 3), we can take infinite many pairs of
u,v € TN K =TNC such that u — v is parallel to z, and |ju — v||¢c = 1. So, in this
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Figure 2:

case there are infinite many normal hexagons inscribed in C.

Figure 3:

Consider a normed vector space in a plane with a normal hexagon as the unit circle
C, then the normal hexagon itself is an inscribed normal hexagon in C. It has side-
medians of C-length 1, but it is not a inner product space.

Lemma 3: Let z be a vector in C, and z,u,v, and —z in C are counterclockwise
located, then ||v — z||¢ 2 [||lu — z||¢, and ||v — (—2)|c < ||u — (=2)]|c-

Proof: Let v’ and v’ be the normalizations of u — z, and v — z respectively. Then
v and v' € C. If ' = ', then u,v, and z are colinear. So |[v — z||c > ||u — zl||c-
Otherwise z,u’,v', and —z are counterclockwise located too (see Figure 4).

Case 1: If the line L, passing through v and v’ intersects the line L, through —z
and z at a point @, and @ is on left side of —z, then ||[v — z||¢ > 1 (see Figure
5). The L, passing through v and v’ is either parallel to the line L, (in this case
llu — z||c = 1, therefore |[v — z||¢ > ||lu — z||c = 1), or intersects L, at a point P.
If P is on the right side of z, then ||u — z||¢ < 1 (therefore |[v — z||c > [lu — z||c).
If P is on the left side of —z, then from the convexity of K, P must be on the left
side of Q). By considering similar triangles with. vertices u, z, P and vertices u’, o, P, we

have ||u—zl||¢c = %. Similarly from similar triangles with vertices v, z, @ and vertices
: P
v',0,Q, we have ||v — z||c= llg_ill Since ﬁ < llg_ill’ we have |[v —z||¢ > [|u — z||c.

Case 2: If line L, is parallel to line L, , then {|v — z||c = 1 (see Figure 6). ;From
convexity of K, the line L, either intersects line L, on the right side of z, or L, is
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Figure 4:

Figure 5:
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parallel to L; so ||u — z||¢ < 1. We still have ||v — z||¢c > ||u — z]|c.

u/
AQ L

u

v

L’IA,

-z

Q
8

Le P

Figure 6:

Case 3: If the point (), the intersection of line L, and line L, is on the right side
of z, then ||v — z||c < 1 (see Figure 7). From convexity of K again, the point P, the
intersection of L, and line L, is either on the left side of @, or coincides with Q). Similar
to case 1, by considering the similar triangles we have ||[v—z||¢c = % > jl%ll = |lu—z|lc.

Figure 7:

Similarly, we can prove |[v — (—=z)|l¢ < ||lu — (=z)||c. The proof of lemma 3 is
completed.

Lemma 4: If the curve C of unit vectors is invariant under rotation by 30°, then C
does not contain any line segment with C-length greater then or equal to 1.

Proof: Suppose u,v’ € C such that ||[v'—u||¢ > 1, and the line segment L connecting
uvand v C C. If Lv'ou < 30°, take a vector v such that Zvou = 30°, and |ov| = |oul,
then v € C, and by lemma 3 |[v — ull¢ > ||v' — ullc > 1. If Lv'ou > 30°, take v € L
such that Zvou = 30°. From the hypothesis, |ov| = |ou|, and the line segment [u, v]
connecting u and v coincides with L. So we have v’ = v and therefore |jv — u|lc > 1.
Let w = ¥ then w € K, and ||w|lc < 1 (see Figure 8). Let t = v — u, then

Htlle = llv —ulle = 1,|t| = |u — v| = 2|u|sin 15°, and the angle between ¢ and w is
90°. Let s be the image of rotating w couterclockwise by 90°, then ||s||lc < 1, and
|s| = |w| = |u|cos15°. Since cos15° > 2sin15°, we have |s| > [t|. But ||t|lc > ||s||c-

This is a contradiction. The proof is completed.
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Figure 8:

Theorem 1: If the curve C of unit vectors is invariant under rotation by 30°, then
every normal hexagon inscribed in C' has side-medians of C-length ‘/75

Proof: Let u be a vector in C. Since C is invariant under rotation by 30°, C does
not contain any line segment with C-length greater than or equal to 1. Therefore the
normal hexagon inscribed in C' with u as one of its vertices is unique (lemma 2). Let
uy, Uz, U3, and u4 be the vectors obtained by turning u counterclockwise by successive
steps of 30° (see Figure 9). Then the hexagon with vertices u, u, u4, —u, —uo, and —uy
is the unique normal hexagon inscribed in C.

u+tu u+tu
We have ||252]|c = B2 = B2l = 8 Similarly, we have || 2235 ||¢ = || “+{=|; =
||M”C = ||(_u2;&||c = “%HC = ‘/75 The proof is completed.

Figure 9:

So ellipses are not only curves C' with the property that every inscribed normal
hexagon in C has side-medians of ‘/75 A regular polygon with 12n sides in particular a
regular twelvegon will satisfy the condition. Therefore the image of any regular polygon
with 12n sides under any invertible linear map has this property too. Equivalently we
have proved that the property that every normal hexagon inscribed in C' of unit vectors
has side-medians of C-length ‘/75 does not characterize the Euclidean space.
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3 Appendix

In the second part of this paper we study more properties of inscribed normal parallel-
ograms, rhombi, in the unit circle C.

We have already proved the uniqueness of rhombus inscribed in the curve C of unit
vectors with a given point of C' as a vertex in [1]. Now we prove the existence of this
kind of rhombus.

Theorem 2: There is a rhombus inscribed in C of unit vectors with a given point of
C as a vertex.

Proof: Let z € C, from lemma 3 when u moves from z to —z counterclockwise,
|lu — z||c continuously increases from 0 to 2, and ||u — (—z)||¢ continuously decreases
from 2 to 0. So there exists y € C, such that |[|[y—z||¢ = |[y—(—z)||c. The Parallelogram
with vertices z,y, —z, and —y is a rhombus inscribed in C, with a given point z as a
vertex.

Finally, by combining theorem 1 of [1] and the theorem 2 above, we have the fol-
lowing theorem.

Theorem: There is one and only one rhombus inscribed in C, with a given point in
C as a vertex.

4 Discussion

In this paper, the question we posed: a conjecture about the characteristic of Eu-
clidean spaces belongs to the subject of the Geometric Functional Analysis. All figures
which appeared: hexagons, circles, ellipses, symmetric convex sets belong to Elemen-
tary Geometry, the course students studied at high schools and/or in a freshman level at
colleges. The concepts and methods which we need to prove the lemmas and main theo-
rem: linear vector spaces, norm and normed vector spaces, Euclidean spaces, and linear
transformations belong to Linear Algebra, the course we are teaching. Based on the
knowledge in Elementary Geometry, all the concepts and methods about linear spaces
and linear transformations, which make one of the most important parts of the Linear
Algebra course are needed to prove the lemmas and main theorem. After my lectures
students learned that the basic figures in Elementary Geometry have meaning in the
Geometry of Banach spaces they never imagined: different Ellipses are unit spheres of
different Euclidean spaces, and different symmetric convex sets are unit spheres of dif-
ferent normed spaces and so on. And students also learned that the concepts, methods
and results in Linear Algebra course are useful and powerful in proving results in more
advanced mathematical courses. The students told me that they understood better and
deeper what the definitions of the abstract spaces really mean, relations among topics
in the different chapters of the course, and learned how to think mathematically, and
how to use their knowledge in practice. They also told me that they were inspired by
my lectures to do research, and they recognized the tools they acquired in the classroom
remain useful in modern research.

So lectures on this subject in my Linear Algebra course help students to review
the Elementary Geometry, to enhance the understanding of the Linear Algebra course,
and encourage them to study Real and Functional Analysis in the future. I think the
material of this paper is suitable and reasonable to be added to current Linear Algebra

177



course and/or Functional Analysis course.
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ABSTRACT

High order approximations of an integral can be obtained by taking the linear combination of lower degree
approximations in a systematic way. One of these approaches for I-d integrals is known as Romberg Integration
and is based upon the composite trapezoidal rule approximations and the well-known Euler-Maclaurin expansion
of the error. Because of its theoretical nature, students in a classical Numerical Analysis course usually find it
difficult to follow. In order to overcome the difficulty, Mathematica software is utilized to illustrate the method,
and the underlying theory. A Mathematica program and a set of experiments are designed to explain the method
and it's intricacies in a stepwise manner. The program is expected to help the student to learn and apply the
method to I-d finite integrals. However, with minor modifications, it is possible to extend the method to multi-
dimensional integrals.
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1. Introduction

The Romberg integration is he problem of approximating the integral below using the linear
combinations of well-known trapezoidal sums T's in a systematic way in order to achieve higher
orders in an effective manner.

1=jjf(x) dx, abeR, feClab]

The method is based on the Euler-Maclaurin asymptotic error expansion formula and the
Richardson extrapolation to the limit (Joyce 1971). Romberg, a German mathematician, (Romberg
1955) has been the first to organize the Richardson’s method in a systematic way suitable for
automatic calculations on the computer in 1955.

Geometrically speaking, the value of I is the area under the curve of y=f{x) bounded by the x-axis,
and the lines x=a, and x=b. T,'is the area of the trapezium and approximates the value of 1 as shown

in Figure 1 below.

y r' S

N

T H(b)

f(a)

Figure 1 Basic trapezoidal computation Tll over [a,b].

Each trapezoidal sum is defined as

27y

T' = %ﬁ[f[a]+f[b]+2 Zf[xj]]

for i=1,2,...,n (n = maximum level of subdivision), ¥ = %+, j=12,....iand h = (ba)/2“. Note that for
the ith subdivision of the interval x = a, and x=b. The computation starts with Ti' on the interval
[a,b), and T>', T5', and so on are computed by successively halving the interval and applying the basic
rule T, to each subinterval formed. In this subdivision process the Romberg sequence {1,2,4,8,16,...} is
utilized. Other subdivision sequences are also possible (Yazycy 1990).
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For example, after the computation of T,' as shown above, the interval of integration is bisected
and the second composite approximation T,' to I is formed as shown below. Obviously, as the number
of subintervals increases a better, although same order of, approximations to I are obtained.

4

y

f(b)

f(a)

v

a (a+b)/2 b

Figure 2 Composite trapezoidal sum T;' over 2 subintervals.

Once the composite Trapezoidal sums are available, so-called Romberg table can be formed.

T,
Tzl T22
TSI T32 T}3

T, T} T} T

Tl T2 T3 T4 Tl!

n n n n n

via

SR Ve 1

— , i=23,-n and j=23,---,i.
' 477 -

It is known that the entries in the second column of the table are composite Simpson’s
approximations to the same integral (Burden & Faires 1985). The third column entries are also
composite approximations based on the Newton interpolatory formulae. The consecutive columns have
no resemblance to any known method based on interpolation. The trapezoidal rule is of polynomial
order one. That is, trapezoidal sums are exact whenever the integrand f{x) is a first-degree polynomial
in x. Provided that the 1st column entries converge to 1, all diagonal sequences over the table converge
to I as well (Kelch 1993). Moreover, if column k is of order p then the column k+1 entries are of order
p+2. This could easily be justified using the asymptotic error expansion formula:
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I-T' =ch® +c,h* +-+ch™ +On**?) |, h=

The c;’s are constants (based on the Bernoulli numbers) independent of h. This is an even
expansion in powers of h. The linear combinations formed by the Romberg procedure causes the c¢;’s
vanish one by one. Obviously, h approaching to zero (application of the composite rule for smaller and
smaller values of h) suggests that Tj' converges to 1. For singular integrals this expansion is not valid
and it takes different forms depending on the nature of singularity (Lyness & Mc Hugh 1970).

In order to show the way ¢’s vanish when the linear combination of the composite values are
formed, the expansion formula above is applied with two different step sizes hj=b-a (original interval
size), and hy=(b-a)/2, (interval size after the first bisection) to obtain

I-T'= C|/1|2 + C2h|4+"'+ckh|2k + 0(1712k+2) » h=b-a

I-T =C|1’L22+C2h24+---+ckh22k +O(h22k+2) k= b2—a

Multiplying both sides of the latter by 4 and subtracting from the first, and rearranging the resulting
equation, one gets
4T, -T;
- —igh,“ +0(h)

which shows that the first error term of the expansion vanishes and the linear combination of T|' ,and
T,', (T\? = [4T,' - Ty 1/3), produces a higher order approximation to I.

2. Romberg Integration with Mathematica

It is the feeling of the authors that, in learning the Romberg integration, students face some
difficulties in understanding the rational behind the method. The discussion over the asymptotic error
expansion and Euler-Maclaurin series and convergence makes the presentation more complicated.
Working out the details of the derivations and combinations of the composite rules and the formation of
the Romberg table is time consuming, if not boring. Instead, a simple symbolic program could be quite
beneficiary to show all the details and derivations. Such an approach will give the student a chance to
play around with the formulas and observe easily the relation between the composite sums, order of an
approximation and the high orders achievable by forming the simple linear combinations.

A text-based Mathematica (Burbulla & Dodson 1992) is used to develop the program below:
romberg/: romberglf ,{a ,b_},n ]J:=

1. Define h and initialize other variables

h=b-a; -
2. Generate array t for composite sums (to maximum level 10)
Arrayl(t,10];
3. Apply the basic trapezoidal rule to f
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t[l] = h/2 (fla]l + £[b])

4. Create array x to hold abscissas of the points generated s a result of subdivision. The newly
generated nodes (x, e, and +) utilized by t[2], t{3], and t[4] as depicted by the Romberg subdivision
sequence are illustrated in Figure 3.

Arrayl[x,512];

a b
a b
a . . b
a —+ . -+ -+ s —+ b

Figure 3 Nodes of subdivision at levels 1,2,3, and 4

5. Compute composite trapezoidal sums
For[m = 2, m <= 10, m++,
k=m - 1;
Dol x[j]l = a + (j-L)h/2*k , {j , 1, 2°k+1}1;
tim]l = h/2*m ( £la] + £[b] +2 Sum[f[x[§11,¢(3 , 2 , 24k}] )

6. Define the Romberg Extrapolation table r (10x 10 matrix} and initialize its first column to t
Arrayl r , {10,10}]
Forlm =1, m <= 10 , m++ , r[m,1] = t[m]]

7. Form the Romberg table using the first column entries
For[ i =2 , i <= 10 , i++ ,
For[ j =2, 3 <=1 , j++,
rli,jl = (4*(3-1) rli,j-1] - rli-1,3j-1]1 )/(44(3-1)-1)11

Once, this program is made available to the student, the method can be investigated for a symbolic
function f over {a,b] in an effective manner by calling the subprogram romberg with f for, say, 10
levels of subdivision as '

flx_]1 := glx]

rombergl(f, {a,b}, 10]

Romberg integration uses the so-called Romberg sequence R = {1,2,4,8,16,..., %....} to subdivide the
interval. Other subdivision sequences are ako possible and may reduce the number of function
evaluations for the same accuracy. However, Romberg sequence provides full overlapping of the
nodes of integration, i.c., all the nodes at level k of subdivision are included in level k+1. This idea is
incorporated in Step 5 above by replacing tfm] by a recursive definition as follows:

For(m = 2, m <= 10, m++,
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k=m-1;

Forl[j = 1, § <= 2~(k-1), j++,

Do[x[j] = a + (2j-1)h/2*k , {J, 1, 2*k+1}];

tim] = t[m-11/2+ h/2*k(sum[ £[(x[j]1]1, {3, 1, 2+(k-1)}])

3. Experiments

A sample Mathematica session is set up to demonstrate the power of the Romberg integration for a

general function f. The following instructions are to be carried out after setting up the definitions above.
Experiment 1: Set up the first trapezoidal approximation t[1] to I over [a,b].

In[1] :=1[1]

(-a+b)(g[a] + g[b])
Out[1] =

2
Experiment 2: Set up the composite trapezoidal rule t[2] over 2 sub-intervals.

In[2] :=1[2]

(-a+b) (g[a] + g[b] + 2 gla + ------- D

Out[2] =
4
Experiment 3: Set up the composite trapezoidal rule t[3] over 4 sub-intervals.

In[3] :=1[3]

Out[3] = ( (-a+b) (g[a] + g[b] +

-a+b -a+b 3(-atb)
2 (gfa 4+=------ 1+ gla +----- 1+gla+ - D)L
4 2 4

Experiment 4: Simplify the expression
In[4] := Simplify[%]
a+b 3a+b a+3b
(-a+b) (gla] + g[b] + 2 g[---—-1 + 2 g[-----] + 2 g[-------])

Out[4] =

8

Experiment 5: Set up the first Romberg value as a linear combination of t[1] and t[2] and observe that

this is identical to Simpson’s approximation over [a,b].
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In(5] := Simplify[ (4 t[2] - t{11)/3 ]

(-a+b) (gla] + g[b] + 4 g[--—--1)

Out[5] =

Experiment 6. The Romberg table is generated and stored in the two-dimensional array r. Compare
Out[5] with the value of r[2,2].
In[6] := Simplify[r[2,2]]

a+b
(-a+b) (g[a] + g[b] + 4 g[-----1)

Out[6] =

Experiment 7: Display the value of r[3,2] (Simpson’s rule applied to 2 sub-intervals)

In[7] := Simplify[r[3,2]]

a+b 3a+b a+3b
(-a+b) (gla] + glb] + 2 gl--1+4 g[-—--] + 4 gl-—~])

Out[7] =
12

Experiment 8: Display the value of [3,3] (First entry in the third column of the Romberg table).
Observe that this is also an approximation based on the Newton interpolatory formula. The subsequent

columns have no resemblance to any known formulae based on interpolation.
In[8] := Simplify[r[3,3]]

a+b 3a+b a+3b
(-a+b) (7 glal + 7 glb] + 12 gl-----] + 32 g[-----] + 32 gl-~-----])
2 4 4
Out[8] =
90

Experiment 9: Compute the integral below numerically by displaying the value of r[6,6]. Compare the
result with that of Mathematica’s build-in function Integrate.
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jo" Sin[x] dx = 2

(* DEFINE f *)

In{9] = f{x_]:= Sin[x]

(* DEFINE END POINTS OF INTEGRATION *)

In{10] :=a=0

In[11] :=b=Pi

(* DISPLAY SEVERAL ROMBERG TABLE VALUES *)
In[12] := r[2,2)/N

Out[12] = 2.0944

In[13] := ([4,4)/N

Out[13] = 2.000t

(* COMPUTE ACTUAL VALUE AND DISPLAY ERROR *)
In{14] := actual = Integrate[Sin[x],{x,0,Pi}]

Out[14] =2

In{15] := err = Abs[ actual - t[6,6] ] // N

-12
Out[15] = 1.32072 10

The values of the Romberg table, 1[ij]’s, computed by the program, are as follows:

0

1.5708 2.0944

1.89612 2.00456 1.99857

1.97423 2.00027 1.99998 2.00001

1.99357 2.00002 2. 2. 2.

1.99839 2. 2. 2. 2. 2.

Experiment 10: As discussed earlier, the basic Trapezoidal rule is linear and therefore integrates first-
degree polynomials exactly, and each Romberg column doubles the order of approximation. To
investigate this let f be x7, over [0,1/2], and observe that r[4,j] is exact (1/2048 = 0.000488281).

In{16] :=f[x_] :=x"7
In{17] :=a=0
In[18] :=b=1/2

(* CALL ROMBERG WITH F OVER [A,B] %)
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In[19] := romberg[f, {ab}, 4]
In[20] :=1[4,4] // N
Out[20] :=0.000488281 (exact!)
The Romberg table produced by the execution of the subprogram is as follows:

0.00195312

0.000991821  0.00671387

0.00626326  0.00504494  0.000493368

000523608  0.000489369  0.000488361  0.000488281

4, Justification of the Method

Romberg extrapolation method is based upon the existence of the asymptotic error expansion
discussed in section 1. Mathematica can be used to illustrate how and why the method works by
assuming such an expansion and symbolically deriving expressions that correspond to the entries of the
Romberg table. For this purpose, let

In[21] := Array[c,4]

In[22] := e[h_] := Suml[c[i] h"(2i), {i,1,4]}
In[23] :=x = (4 e[h/2] - e[h])/ 3

In[24] :=y = (4 e[h/4] - e[W/2])/ 3
In[25] := Expand[ Simplify[x] ]

4 6 8
-th c[2) Shc[3] 21 hc[4]
Out[25] = - -
4 16 64

In[26] := Expand[ Simplify[ (16 y- x)/151]]

6 8
16c[31h 21 h c[4])
Out[26] = +
64 1024

The last two results illustrate that the values in the second column of the Romberg table are o)
and the third column entries are of O(h%).

S. About the Error Term of the Trapezoidal Rule

187



Mathematica function Series can be used to verify the error term of the Trapezoidal rule given by

b-a)h'
%f“”(u) . uelab]

s
E — ’ _ £
12[f ) - f(a)l+ »

For this purpose, we investigate the error in the basic rule for the integral

s= " Sin[x] dx = —~Cos{a + h] + Cos{a]

a

(* DEFINE F AND CALL ROMBERG OVER [a,a+h] *)

In[27] :=1f[x_] := Sin[x]
In[28] := romberg[f,{a,a+h},10]
Inf[29] := (1]

h (Sin[a] + Sin[a+h])

Out[29] =
2
In[30] := s = Integrate[Sin[x],{x,a,a+h}]

Out[30] = Cos[a] - Cos[a+h]

(* FIND THE ERROR IN t[1] *)
In{31] := e = Series[s - t[1], {h,0,3}]

3

Sinfa] h 4

Out[31] = -—ronee +O[h]
12

(* USING THE DEFINITION ABOVE FOR ERROR IN TRAP. RULE *)
In[32] :=terror = -h"*2/12 (Cos[a+h] - Cos[a])

2
-(h (-Cos[a] + Cos[a+h]}))
Out[32] =

12
In[33] := Series[terror,{h,0,3}]

3
Sin[a] h 4
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The values of Out[34] and Out[31] are shown to be identical ‘erifying the dominant term of the
error formula.

6. Computational Complexity of Romberg Integration

The complexity of any numerical integration algorithm based upon interpolation is mainly depicted
by the number of integrand function evaluations at the nodes of integration of the numerical rule.
Romberg extrapolation described in this study is no exception. An additional cost is incurred in this case
in the formation of the Romberg table, which is negligible.

The Mathematica program discussed earlier n Section 2 is a static implementation of the algorithm,
i.e., for a fixed subdivision level, say, maxlevel, all of composite Trapezoidal sums are computed first
and then the Romberg table is formed. In this case, considering the overlapping of the nodes in
bisecting the interval, each level n introduces 2" additional integrand evaluations. In higher
dimensions, this may result in too many function evaluations, and hence the method may not be
computationally efficient. This could be avoided by forming the rows of the Romberg table
dynamically. That is, at each level, rows of the table are completed by the Romberg formula and an
error test is performed to check the accuracy of the diagonal value r[n,n]. Whenever, the error criteria
is satisfied, the algorithm terminates avoiding further unnecessary subdivisions and function evaluations.
Otherwise, next composite sum is to be formed by bisecting the interval one more time.

This idea can be easily incorporated into the Mathematica code given in this work. The dynamic
implementation is given below.

dynamic_romberg/: drombergl[f_ ,{a_,b_},n_, tol_]:=
(h=b-a;
Array[t,n];
t[1l]l= N[h/2(f[al+£[b])];
Array[x,512]; Arraylr,{n,n}];
For [m=2, m<=n, m++,
k=m-1;
Do[x[jl= Nl[a+(j-1)h/24k],{],1,2*k+1}];
t[m]l= N[h/2*m(f[a]+£[b]+2 Sum[£[x[j1],{j,2,2*k}]1)]1];
For[m=1,m<=n,m++, r[m,1]=t[m]];
reler = 1; H
i=2;
While[reler >= tol && i<n,

Forl[j=2,j<=1i,Jj++,
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rli,jl1=(44(3-1)rli,j-11-r[i-1,j-11)/(44(j-1)-1)1;
reler = Abs[(r[i,il-r[i-1,i-1]1)/r[i-1,i-1]1];
Print(["i=",i,",",rl[i,i],
"computed relative efror:“, reler];

i+

A sample run and its output is given for the approximation of f{x]=Sin[x], over [0,Pi/2].

fx_]:=Sin[x]
dromberg([f, {0,Pi/2},10,0.00001]
i=2, 1.002280 computed relative error =0.276142

i=3, 0999992 computed relative error =0.00228311
-6
=4, 1.000000 computed relative error =8.44274 10

7. Comparisons and Conclusions

In this article, Romberg extrapolation technique is illustrated using the symbolic computing facility as
provided by Mathematica. Main objective of this article is to facilitate symbolic computations in order
to present a highly technical method in a simplified manner. Because of the nature of the work done,
numerical calculations are mostly avoided. A brief comparison of different approaches to numerical
integration is outlined below.

Romberg method is built on the trapezoidal rule that is based on the linear interpolation over the two
points on the interval. Higher order interpolatory rules (Newton -Cotes type formulae) can be used for
high order approximations. However, the coefficients of such rules alternate in sign causing loss of
accuracy. Another class of integration rules are Gaussian type that uses coefficients based on the roots
of certain orthogonal polynomials over the domain of integration. Gaussian type rules provide higher
degrees of accuracy compared to Newton-Cotes formulae, however, amount of work done increases
dramatically because of lack of overlapping during the subdivision of the interval to obtain composite
sums. Monte Carlo methods involve generating random numbers over the domain of integration, and
then computing the expected value (approximation to I) by simply averaging the function values at the
randomly generated points. Monte Carlo methods are suitable for N-dimensional integration for its low
cost compared to the rules mentioned before. For a detailed comparison of these methods the reader is
referred to, for example, (Davis & Rabinowitz 1975).
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SERVICE WITH A SMILE

Dr Michael R. CARTER
Institute of Fundamental Sciences
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Palmerston North, New Zealand

M.R.Carter@massey.ac.nz

ABSTRACT

In this paper I will discuss some aspects of specialised service teaching, by which I mean the teaching of
mathematics to an identifiable group of students with a shared primary interest which is not mathematics. I
will first argue for the vital importance of service teaching in general, not because of its budgetary
implications for mathematics departments, but because of its role in ensuring the overall health of
mathematics as a discipline. I will then examine two key issues concerning the teaching of specialised service
courses, namely whether mathematicians should teach such courses, and if they do, how they should
approach this task.
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1. Introduction

In this paper I will be mainly concemed with what I will call specialised service teaching, by
which [ mean the teaching of mathematics to an identifiable group of students with a shared
primary interest, which is not mathematics. A course in complex variable for engineering students
would qualify, as would an introductory course in calculus for biology majors, but not a general
introductory course in calculus for students including mathematics majors, or for all students other
than mathematics majors. First, though, I want to say something about service teaching in its
broadest sense, that is, the teaching of mathematics to students whose primary interest is not
mathematics.

The issues I want to discuss fall under three headings:

. Why is service teaching important?
. Who should teach specialised service courses?
. How should mathematicians approach the teaching of specialised service courses?

2. Why is Service Teaching Important?

"Of all the resources which the human spirit possesses ... none is so
momentous and so inseparable from our inner nature as the concept of
number. ... Every thinking person ... is a number-person, an arithmetician".

J.W.R. Dedekind, undated manuscript

Some years ago I took part in a study of the mathematical needs of school-leavers in New
Zealand. The particular aspect that I was involved in was the investigation of the mathematical
needs of everyday life. The detailed conclusions that we reached are not relevant here. But the
study brought home forcibly to me the fact that virtually everybody does mathematics frequently in
the course of their daily lives, in many different contexts: shopping, completing tax returns, working
out household budgets, calculating quantities for home decorating, playing games ... — the list is
endless. The fact that everyone does mathematics makes it almost unique among academic
disciplines; people may take an interest in history or geography, but they do not do it inescapably in
their daily lives.

There is nothing new here, of course, we all know this. But the point I want to emphasize is that
this is why society regards mathematics as deserving of a special place in the school curriculum —
not because of the aspects of mathematics that we mathematicians regard as important. By most
ordinary standards of importance, it is arithmetic and elementary geometry that are the most
important parts of mathematics, not functional analysis or group theory.

Much the same can be said at the level of tertiary education. What gives mathematics a special
place in tertiary education is the fact that it is needed by scientists, engineers, economists,
sociologists ... — and again the list is endless. If it were not so, mathematics departments would be
small groups teaching small classes of a few devotees.

Once again there is nothing new here. We all know that large service classes are a budgetary
necessity for most mathematics departments, so of course service teaching is important! But that is
not the point I want to make. If, as [ argue, almost everyone does mathematics at least some of the
time, then service teaching is important simply because it is the way almost all of those who do
mathematics learn the subject. It is vital for the health of the discipline that it should be done well. If
most of the people who do mathematics do so unwillingly, inexpertly and with feelings of dislike if
not actual nausea, then mathematics is in a bad way. If on the other hand they do mathematics with
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a sense of enjoyment and view it as a friend rather than a foe, then we as teachers have done well
and our subject will flourish at all levels.

The teaching of mathematics majors is of course essential for the continuation of the subject, but
we do not need encouragement to be attentive to that aspect of our educational task. Service
teaching, on the other hand, often risks being neglected because it is seen as a tiresome necessity, a
digression from our main task of educating mathematicians. I believe that for service teaching to
receive the attention it deserves, it needs to be seen for what it is — one of the most important
things that we as teachers of mathematics do.

3. Who should teach specialized service courses?

It may not be so everywhere, but certainly in the university systems that I have worked in, the
question of who should teach specialized service courses is a perpetual source of tension. Because
of its budgetary implications, the question is all too often seen as a purely political one, but here 1
want to focus on the academic question. Who are the best people to teach such courses — the
mathematics subject specialists or the specialists in the students' primary interest subject? We might
like to say that mathematicians are the best qualified people to teach such courses, but what
reasons can we advance to justify this?

The most obvious reason is that mathematicians are the experts in mathematics, and university
students should be taught by experts. When it comes to teaching mathematics majors, this argument
is conclusive. In the case of service courses, it remains valid, but the acknowledged expertise of
mathematicians does bring disadvantages as well. As mathematicians, we see the subject from a
particular viewpoint, which is not the same as the viewpoint of-students in service courses. For
example, a mathematician would probably see Fourier series as a special case of the general
phenomenon of the representability of elements of a Hilbert space in terms of orthonormal bases.
But if the students are electrical engineering students, they will see the subject in terms of signal
processing and spectral analysis. Unless their mathematician teacher takes this into account, the
students may feel (perhaps rightly) that they are being taught by someone who does not understand
their needs. Again, mathematicians tend to be excited by singular cases and exceptions, which help
to sharpen our understanding of the conditions under which various results hold good. But students
in other disciplines care much less about such things since they seldom or never arise in practice.
We need to keep a sense of proportion when teaching service courses and not get too carried away
by "interesting” special cases, which are really of interest only to ourselves.

The second reason that might be advanced is that we are the experts on the teaching of
mathematics. Here again it can safely be said that we are the experts on teaching mathematics to
budding mathematicians (though even so we are not always conspicuously successful). We tend to
take it for granted that this expertise will easily transfer to service courses, and are unimpressed by
the doubts sometimes expressed by our colleagues from other disciplines. But when teaching
service courses we are not teaching people like ourselves (or even people with ambitions to be like
us). We need to keep reminding ourselves that while we may be teaching mathematics, we are not
teaching mathematicians. Making our teaching acceptable to students who do not necessarily share
our interest in mathematics is not easy. It may require us to take an interest in things non-
mathematical, rather than assuming that the students have an interest in things mathematical.

The contrary case for leaving the teaching of specialized service courses to specialists in the
discipline being serv?d is of course made by turning the negative features of teaching by
mathematicians into positive arguments for the contrary. The positive features of teaching by
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mathematicians will nawrally then become arguments against the contrary! But the case against
teaching by mathematicians is not without strengths and we certainly cannot simply dismiss it as ill-
conceived.

In short, I do not think we can or should expect others to take it for granted that we are the
people best fitted to teach service courses in mathematics. To prove our case we need to take such
teaching very seriously and put in the effort required to overcome some of the handicaps that I
have mentioned. This brings me to my last section.

4. How should mathematicians approach the teaching of
specialized service courses?

I think one of the biggest problems facing mathematicians teaching specialized service courses
is that the students tend to see both the teacher and the subject as alien. Advanced students in, say,
engineering or ecology usually form a coherent group, attending many classes and laboratories as a
group and getting to know the teachers in their chosen fields very well. By contrast the
mathematician appears for a few hours each week and may well seem like a being from another
world, particularly if the mathematics is obviously being taught from the point of view of a
mathematician rather than an engineer or a biologist. Terminology and notation that is different
from what the student sees in other subjects can increase the feeling that mathematics is an alien
subject. To take a very simple example in connection with the teaching of engineering students:
mathematicians (and textbooks on engineering mathematics written by mathematicians) invariably
denote the solutions of x2 + 1 = 0 by i, while engineers (and textbooks on engineering mathematics
written by engineers) denote them by #j. So students are immediately conscious of a distinction
between the two worlds, yet there is really no reason why a mathematician teaching engineers
should not adopt their notation.

You can probably guess what my proposed solution is: as far as possible, mathematicians
teaching specialized service courses should try to see the subject from the point of view of the
discipline being served. Now you may say: "But I am a mathematician, not an engineer or ecologist
or whatever. How can I not see the subject from the point of view of a mathematician?" — and of
course there is some truth in that. But as professional mathematicians we are often confronted by
problems brought to us by people outside mathematics, and in order to help them we have to
understand their points of view and interpret our mathematical solutions in their terms. On the
whole, I think we are pretty good at this, and their is no reason why we cannot do the same in our
teaching. It does require some extra effort though: it is important to talk to practitioners of the other
discipline and to read the textbooks that the students will use in their other subjects. Just using some
of the terminology and notation that these textbooks use can make a big difference. And perhaps
most important of all, the teacher should have or be willing to develop a genuine, even if only
amateur interest in the other discipline. A service mathematics teacher who really has no interest in
the discipline being served is not likely to be successful.

Let me give a few examples of what I mean:

() Textbooks on calculus for economics generally define concepts such as marginal cost,
elasticity of demand and so on in terms of derivatives, give a brief explanation of their significance
and then plunge into examples and exercises involving the calculation of these quantities for
specific, often quite arbitrary, functions. This has its place, of course, but textbooks on introductory
microeconomics do very little of this. The focus is much more on qualitative questions involving the
interpretation of these quantities and effects of changes in them. Often the material in the
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mathematics text is of little direct help in understanding these matters. Yet it would not be difficult
to incorporate such ideas into the mathematics course and thereby make it much more relevant to
the students' real needs.

(i) Functions of a complex variable are very important for engineers in connection with control
theory. Textbooks on mathematics for engineers typically focus on residue theory, leading towards
applications such as the evaluation of certain definite integrals. This is a mathematically beautiful
theory, but it is of only marginal relevance to control engineers. Certainly they need to know about
poles, but their interest is in the location of poles in connection with the stability and behaviour of
control systems. There is plenty of interesting mathematics here, but it needs to be dug out of texts
on control theory, not mathematics texts, and it tends to use its own specialized language. Time
spend on finding out these things and incorporating them into a service course is wel rewarded by
having a much more motivated class.

(i) Mathematicians may find themselves teaching a course to ecology students on the
mathematical modeling of populations using differential equations. It is very easy to get carried
away by the mathematical tidiness of the models involved and forget that real populations do not
always behave in the tidy way predicted by our models. A look at texts and journal articles on
ecology will provide plenty of material for a more critical look at the relevance and applicability of
our models, surely just as important as training our students in the mathematical techniques, and
probably more interesting for most of the students, since only a few will go on to become specialists
in mathematical modeling.

To sum up: I have argued that service teaching is of the highest importance for the health of
mathematics. I believe that we as mathematicians are the best people to do it provided we are
prepared to make the effort to meet the students halfway. My experience is that if we do this,
service courses can be immensely satisfying and enriching for both teacher and students.
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CLASSIFYING STUDENTS’ MISTAKES IN CALCULUS
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ABSTRACT
This article analyses some structural errors in calculus problems from first year mathematics undergraduates.
They arise for reasons related to generalisation, intuition, inadequacy of concepts, instrumental

understanding, problems of language and symbol manipulation. The lack of metacognitive control is also an
important factor.
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1. Introduction

There are many accounts of mathematical errors, which have an underlying logical
explanation. In a pioneering study Brown and Burton (1978) catalogued many such errors in the
domain of arithmetic. There have been similar studies since, for example Van Lehn (1980), and
Maurer (1987). In the Concepts in Secondary Mathematics and Science project, reported in Hart
(1981) misconceptions in other areas of school mathematics were investigated.

In many situations what appears to happen is that a procedure is learned instrumentally (Skemp
1976) in a way which does not reflect the underlying mathematical structure but which gives the
correct answers in a particular set of examples. It is then extrapolated, but gives incorrect results,
because of the structural mismatch, which the instrumental learning cannot adapt to. A common
undergraduate example is

dy 1 d 1
_—=— ¥ _—=—_ t).
(correct) — E» » (incorrect)
dy dy

Maurer’s (1987) article, which discusses mainly subtraction, considers generalisation, and
makes the point that this seems to happen purely syntactically, ignoring semantic considerations.
Norman & Pritchard (1994) relate errors to Krutetskii’s (1980) ideas about generalisation.

In undergraduate mathematics Orton (1983) discussed errors in basic calculus. Following
Donaldson (1963) he focused on Structural Errors (as distinct from mistakes in calculation
(Executive Errors) which nevertheless sometimes have a structural explanation). Orton’s work
concentrated on basic concepts and calculations in one-variable calculus. He explored things like
limits, the meaning of dy and dx and the differential quotient, rates of change and turning points.
In dealing with integration he looked at the integral as the limit of a sum, and at area and volumes
of revolution. The examples he reported use simple polynomials, concentrating on basic
conceptions. In this paper we explore structural errors occurring in first year university calculus
arising as a result of procedural extrapolation as described above. We have chosen examples
which emphasise algorithmic procedures, and which are some way beyond the basic ideas which
Orton discussed.

Cipra (1989) gives examples of student errors in his book on mistakes in calculus, and suggests
methods of checking and monitoring. This relates to the ideas of Schoenfeld (1985) concerning
metacognitive control. Cipra does not analyse individual student errors to categorise them
structurally, as will be discussed in this article. He gives some hypothetical explanations, for
example for Fractional Inversion (p.61).

All the examples below were encountered in students’ written work, or during problem classes.
In the former case the written work was followed by discussions, where students explained their
(erroneous) procedures. In problem classes one was able to interrogate students’ thinking as they
worked on problems. In the examples we give a condensed version of the students’ solutions, and
a résumé of their explanations, using their own language, to clarify the observations.

It is important to realise that these are not isolated errors. All the examples here were
encountered during a one semester first year university calculus course. They are a small but
representative sample, not only of that course but of many of the structural errors one has
observed teaching calculus over many years.
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The examples below are split into three categories: procedural extrapolation, pseudolinearity
and equation balancing. These are not designed to be a definitive taxonomy, but to indicate that
one can observe common features among the student errors one encounters.

2. Procedural extrapolation

We give three examples involving differentiation, and then two on integration, where the
second has several integrals giving rise to similar errors.

Example 1: Find the first five derivatives of f(x) = exp(x + xz).

Solution: f'(x)=exp(x+x2);f"(x) = exp(x+ x2);..and so on: they are all the same.

Explanation: Well, the derivative of the exponential function is always the same.

Comment: The student has used the fact that the derivative of the exponential function is the
exponential function. This has however been used as if it were a universal procedure. One can
observe this particular extrapolation in many similar contexts. The students appear to be operating
on the (exponential) function as an object, having lost sight of its process or action attributes
(Thompson 1994, pp. 26-7). However, as Thompson points out

*“ it is easy to be fooled - to think that students are reasoning about functions as objects
when it is actually the function’s literal representation (i.e. marks on paper) that are the
objects of their reasoning.”

In fact one might also refer to oral representation since they say the exponential function in
their explanations. The kind of error in this example is encountered both when the function is
x2

written as e*** and also as exp(x+x2), emphasising that the students associate a name (the

exponential function) with what they see on paper, and then operate with the name (verbal
symbol) and the properties they associate with that. Evidence from students’ written work in the
context of this error suggests that they also operate internally in this way. Subsequent discussions
confirm that their internal verbalisation of their procedures follows the same pattern as that which
they offer when they work “out loud”.

Example 2: Find the Maclaurin expansion of f(x) =In(l + 2x).

Solution and explanation:

You need to work out the derivatives and then put x = 0. The first one is f'(x) = e
+2x

This is a fraction so you have to use the quotient rule. First you square the denominator. On
top you have two terms. The first is the denominator times the derivative of the numerator, and
there are no x terms so the derivative of that is 1. The second term is minus the numerator times
the derivative of the denominator, which is 2. So you get

£ = (l+2x)—22 _ 2x—l2 ‘

(1+2x) (1+2x)

You do the next one the same way, by the quotient rule
wo (1+20%.2-@2x-1201+2x)-2

[ = 7 .

(1+2x)

This is getting too complicated. It must be easier but I can’t find a mistake.

Comment: This example was observed in a tutorial class with the student being asked to think
out loud. The student had seen so many applications of the rule that he could not imagine the
possibility that the denominator term should be multiplied by zero in applying the quotient rule.
He was easily able to follow the alternative solution, writing the first derivative in the form

F(x)=(1+2x)"" and continuing by using the chain rule successively, but he could still not find
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his mistake. When it was pointed out that the derivative of his original numerator is zero and not 1
he was genuinely surprised, responding
So the quotient rule doesn’t always have two terms on top?
He took a lot of convincing that he did have two terms, but one of them was zero.
But nought is the same as nothing. So there is really only one term is there?
Here the form of the result of the procedure as well as its description is being extrapolated.
Example 3: Find the first and second partial derivatives of f(x, y) = exp(xzy2 ).
d%f

-5—2_ = (2xy2)Z exp(x2 y2 ). [The other second order partial
X

Solution: (;i =2xy? exp(x?y?);
X

derivatives were subject to the same error.]
Explanation: When you use the function of a function rule the derivative of the exponential

Sunction is the same again. Then you differentiate what is in the brackets and so you multiply by

2xy2.

You do the same again to work out the second partial derivative, so you multiply by
another 2xy2.
Comment: The first partial derivative has been calculated correctly. The problem seems to be
that this procedure has been formulated in the instrumental form
multiply by 2xy2.
The first step does not involve the product rule and so the student performs the following steps
by extrapolating the procedure used at step 1, namely

multiply by 2xy2 , and the exponential function is unchanged.

Example 4: Evaluate the indefinite integral fxcos xdx.
Solution A: fxcos xdx = %xz (—sin x).

Explanation: Integration by parts is the reverse of the product rule for differentiation. In the
product rule you differentiate both functions, so for integration by parts you must integrate both
Sunctions.

Comment: What is interesting is that in this example many of the students making the error
were able to apply the product rule for differentiation correctly during the course of discussion.
What appears to be extrapolated here is not so much the procedure but an informal verbal
description of the procedure. The linguistic register (Pimm, 1987, Chapter 4) has been shifted
from that of mathematical English to everyday English, where the fuzziness of ordinary discourse
is a factor.

Other students arrived at this kind of error by asserting that

the integral of a product is the product of the integrals.

2

Solution B: fxcos xdx = %x cos x + x(—sin x).

Explanation: This student also said that
integration by parts is the reverse of the product rule for differentiation.
She continued
For differentiation (fg)’ = gf '+ fg’, so for integration
ffg = g><ff +f><fg-
Comment: As in example 2, preservation of form appears to be a factor here.
Example 5: Evaluate the following indefinite integrals:

200



O

ERIC

Aruitoxt provided by Eic:

f ! dx;j—lx—zdx;jcos(x3)dx;j(t2+1)%dz.

1+3x 1+
Solution:
2
J' 1 dx=ln(l+3x);.|' 1 dx=]n(]+x );
14+ 3x 3 14+x2 2x
.3 . 2, s
foosydx = 22N 2 7 gp = DD
3x? %-2!

Explanation: If you differentiate In(1+3x) you get the function we are supposed to be
integrating, except for an extra 3, so we have to divide by the 3 to get the answer. The others are
similar. In the second one “I over” gives you a log again. This time if you differentiate In(1+x?)
you get an extra 2x, so you have to divide by it like we did in the first one. In the next one the
integral of cos is sin, and this time if you differentiate you get an extra 3x?, which you divide by.
In the last one, if you integrate xn you get x*! over n+1. But it isn't x, it's t2+1, so again if you

differentiate you get an extra 2t, so this gets divided as well as the %

Comment: The students appear to have formulated the instrumental procedure “divide by the
derivative of what is in the brackets”. This works in the case when that derivative is a constant,
where the “inner function “ is linear. It is being extrapolated to situations where the inner function
is non-linear. This is a very commonly encountered error. Many students display it, and their
explanations usually follow similar lines to the one reported here. One can speculate as to how
this extrapolation might be a consequence of instruction as follows. Students are urged always to
check their integration by differentiating the result. When they first encounter differentiation of
composite functions they are given examples like the first one, where the inner function is linear,
in order to keep the calculations straightforward initially. For example the textbook Adams (1995)
presents the Chain Rule in §2.5 (p.121), but prior to that in §2.3 there is a separate explanation “A
Special Case of the Chain Rule” for derivatives of functions of the form g(x) = f(ax+b). In the
context of integrals like the first one in this example what they observe is that when they
differentiate the inner function they always obtain what is in the denominator. The resulting
cancellation gives the correct result. We have encountered students who have consciously
extrapolated this aspect of the procedure when checking other results. For example in the second

In(1+ x2)

integral, when checking by differentiating they do not use the quotient rule. Instead

they follow a sequence of steps which imitates what happens with —ln(l ;3x)’ so that the
procedure
differentiate In(1+3x) and you get 1 over (1+3x) times 3, which cancels with the 3 in
the denominator
is transformed to
differentiate In(1 +x°) and you get 1 over (1 +X°) times 2x, which cancels with the 2x in
the denominator.

When the error is pointed out, it is not uncommon for students to query the first (correct)
integration. Having been shown that a procedure they have used gives an incorrect result in one
case, they feel that it must be wrong in all cases (a further extrapolation), as their own comments
indicate.
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As well as using written work, where students are asked for explanation some time later,
situations like this have been observed directly in a tutorial setting. Students give verbal
explanations along the lines reported here, and when asked “is that how you thought about it”
respond affirmatively. In many cases the students provide observable evidence that their subvocal
(self-talk) explanations (Pimm, 1987, p. 24) are very close to what they say out loud.

3. Pseudolinearity

A well known class of extrapolations is the erroneous use of linearity in such examples as
In(x+y)=Inx+Iny;e*” =e* +e”; tan(x + y) = tan x + tan y;
(a +b)2 =a’ +b2; (sinx + 1)2 =sin?

va+b JE+J_ biVar? +4=2+72; 1+—=1+T

It is clear from discussions with students that they do not consciously think of the various
functions involved (square root, tangent, etc.) as linear. Errors such as these occur before they
encounter linearity in an overt, systematic manner as linear operators in differentiation and
integration, linear transformations in linear algebra etc. One of the underlying possibilities is
extrapolation of the distributive rule, and Norman & Pritchard (1994) label such examples
unequivocally as generalised distributivity, as does Maurer (1987). One does in fact come across
students who say

log times x plus y is log times x plus log times y.

One also encounters, in connection with the square root error for example, explanations like

well, when you do something to a + b you get the same as doing it to a and doing it

to b. It’s the same as with atimes b.
Norman & Pritchard formulate this as F(a*b) = F(a)* F(b), where * is some binary

x+1

operation (extrapolated from situations such as Jaxb = w/;x\/;, where it is true). In practice the
situation is more complicated than just the single category of distributivity would imply. We find
the use of the generalised rule f(a*b)= f(a)o f(b), with different binary operations on each
side, for example In(a +b)=In(a)xIn(b), which is an erroneous extrapolation from the two
(correct) relationships In(axb)=Ina+Inb and exp(a+b)=exp(a)xexp(b). The focus of

attention seems to be the a and the b. These seem to be the primary objects, with the binary
operations not being regarded as objects to the same extent. What is clear is that the binary
operation plays a lesser role than the algebraic variable. With many of these errors students will
spontaneously correct them when challenged. They often put it down to memory,
Oh! I never remember whether it’s plus or times,

rather than the structural considerations above. This is not surprising, because they do not have
the language to describe these things in structural terms.

As well as the rule F(a*b)= F(a)* F(b) being applied when F is a real function, it is also
applied when F is an operator such as differentiation. A typical example is the assertion that the
derivative of a product is the product of derivatives.

Example 6

—d—]n[ S0 xJ= ‘x (J\c_2 sin J\ch~l cos x)
dx x sinx

Explanation:
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Well because it’s In you have one over what’s in the brackets. Then you have to differentiate

the bracket, so it’s easier to write it as x2

sinx. So you have to differentiate the first and the
second and multiply by the one over bit.

Comment:

This student performed well on basic differentiation exercises using the product rule, and did
not use pseudolinearity. However in previous exercises on the chain rule the “inner function” did
not involve products or quotients, but simple polynomials or trigonometric or exponential
functions. The expectation was therefore established that the answer would always be in the form
of a product of expressions. In extrapolating this expectation we see that pseudolinearity comes to
the surface again. The earlier exercises on differentiating products (and quotients) had not
eradicated this deep-seated structural misconception.

It is sometimes unclear whether examples in this category are structural (e.g. application of
linearity), or arbitrary (randomly mis-placing of the binary operations), in the sense of Orton and
Donaldson. This would benefit from further research.

4. Equation balancing

How often do we emphasise in elementary algebra the principle “you do the same thing to both
sides of an equation and they are still equal”? (Pimm, 1987, p.20)

Well here are some situations where the students’ explanations involve this principle. What
may be significant is that on many occasions in their comments the students replace the phrase “1o
both sides” with ‘“‘on both sides”.

Example 7:

[—— du=tnl1 +uf*; j%m—:mlxzwxw‘
(1+u) x“+4x+7

Explanations:

I ! du = ln|l + u| , and you cube on both sides.
(1+u)

J.ldx = 1n|x| , onlyit’s x2 +4x+7on both sides instead.
x

Comment: The students are not applying a general rule of the form I—}- = ln|f|, for if they are

given an example where f is a trigonometric function they do not respond in this way. One does

1
not find errors like [ cost: Hx = cos(Inx , or
I (th (In-x) J‘cosx

dx = In(cosx) with anything like the frequency

with which this type of error appears when simple polynomials are involved as in these two
examples. So there are some limits to the extent to which procedural extrapolation occurs. (It is
tempting to talk about a “Zone of Proximal Extrapolation”, a la Vygotsky.)

Finally we have an example from the examination paper on the course from which all the
errors in this article come.

;, by any method.

Example 8: Find the Maclaurin expansion of f(x) = :
(1+2x)4

Solution:
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=142x+(2x)2 +(2x)° +..., and so

14+2x

L
;=1+2x4 +4x

(1+2x)%
Comment: In this case there wasn’t a verbal explanation because it was an examination
question, but the results of the application of the principles of equation balancing and pseudo-
linearity can be clearly seen.

o
PN

+8x4 +...

5. Conclusions

Many studies concerning students’ mistakes analyse elementary mathematics (Brown and
Burton (1978), Van Lehn (1980), Hart (1981), Maurer (1987)) or basic concepts of more
advanced topics - Orton (1983).

In this study we have discussed mistakes relating to algorithmic processes in one variable
calculus, lying beyond the basic principles. The study demonstrates that mistakes occurring here
reflect structural errors, which Donaldson (1963) found in elementary mathematics. These involve
confusion between object, action and process (Thompson (1994)), mis-application of language
(Pimm (1987)), generalisation (Krutetskii (1980), Maurer (1987)), confusion between syntax and
semantics (Norman & Pritchard (1994)), and inadequate metacognitive control procedures
(Schoenfeld (1985)). This provides evidence that the types of error present in elementary
mathematics continue into more advanced mathematics. This confirms the suggestions of Maurer
(1987) and Norman & Pritchard (1994) that such structural errors cannot be avoided. In teaching
mathematics we emphasise qualities such as flexibility, reversibility, generalisation and intuition,
and so paradoxically it seemes that these very qualities can give rise to structural errors. From a
constructivist viewpoint they will happen in the course of learners constructing their own
meanings.
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ABSTRACT

During the past decade, handheld graphers have fundamentally changed the teaching and learning of
many school mathematics concepts — particularly those dealing with graphical representation and
visualization (Demana and Waits, 1992). Graphing calculators have enabled many students to experience
mathematics as a more dynamic, interactive, and visually -appealing area of study. Yet, because graphers
have historically lacked symbol manipulation capabilities - relying on numerical approximations to
calculate - their impact on the teaching and leaming of equarion solving and symbolic manipulation has
been minimal. While many secondary school teachers and students use calculators to study graphs, they
continue to examine algebraic manipulation using pencil-and-paper or chalkboard -based activities.

However, a powerful new generation of graphing calculators equipped with symbolic manipulation
capabilities is likely to change this situation. Handheld Computer Algebra Systems (CAS) — including the
Casio FX 2.0 and Hewlett Packard 49g — will likely prompt instructional changes that mirror those
precipitated by handheld graphers a generation ago.

In the following article, the authors discuss features of Symbolic Math Guide (SMG), a CAS designed
for use with Texas Instruments TI-89 and TI-92+ graphing calculators. Unlike earlier CAS, SMG was
developed primarily as a pedagogical teaching and learning tool for high school mathematics students — not
a research tool for university faculty. In the first sections of this document, the authors present research
findings suggesting a need for such pedagogically-oriented CAS. In subsequent sections, the authors
provide sample calculator exercises that highlight SMG’s ability to simplify algebraic expressions,
exploring differences between pedagogical and traditional CAS (e.g. SMG and T1-92 CAS). The calculator
exercises are provided as an introduction to SMG for both teachers and researchers.

Keywords: Educational Technology, Graphing Calculators, Computer Algebra Systems, Algebra
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1. Introduction

As educators, we must prepare our students and ourselves for
new and exciting forms of technology that take the best of what
we have to offer as teachers and apply it to our subject matter.

(Diem, 1992, p.109)

Today, we live in a world significantly different from that of only a generation ago. Over the
past two decades, technology’s influence on everyday life has been pervasive and powerful -
challenging our notions of human interaction, communication, and leaming. Incorporating
previously unthinkable tasks into daily routine, technologies such as word processors, electronic
mail and the internet have made life richer, more convenient, and more productive. In a similar
way, handheld graphers have profoundly transformed many aspects of school mathematics.
Graphing calculators have enabled students to experience mathematics as a more dynamic,
interactive, and visually-appealing area of study. Graphing tools have heightened the importance
of graphical epresentation and visualization in mathematics classrooms (Demana and Waits,
1992).

Despite the revolutionary role that graphing calculators have played in the past, their impact
on the teaching and learning of equation solving and symbolic manipulation has been minimal.
Because graphers have historically lacked symbol manipulation capabilities, many teachers have
used the devices to study graphical concepts - while continuing to examine algebraic
manipulation using more traditional pencil-and-paper activities. The introduction of a powerful
new generation of graphing calculators (e.g. Texas Instruments TI-89 and TI-92+, Casio FX 2.0,
Hewlett Packard 49g) promises to change this situation. Equipped with symbolic manipulation
capabilities, these handheld Computer Algebra Systems (CAS) challenge popular notions of
algebraic manipulation in school mathematics. While providing students with powerful means of
investigating the richness of mathematical symbolism in more dynamic and interactive ways, they
call into question the continued role of pencil-and-paper in school algebra instruction.

Although studies of CAS with secondary school students have existed since the early 1990’s
(Aldon, 1996; Hirlimann, 1996; Klinger, 1994), early investigations have typically taken place in
school computer labs using CAS on desktop computers. Important distinctions exist among CAS
studies using calculators and computers.

o CAS-equipped graphing calculators may be used in traditional classroom settings on an
“as-needed” basis. Unlike school computer labs, the use of CAS-equipped calculators
requires no interruption in classroom instruction and no special trips to a remote lab.

o Calculators are more portable and more convenient. Students can use handheld CAS tools
in other classes or to do homework without installing additional computer software or
hardware.

o CAS-equipped calculators integrate symbolic manipulation functionality within an
environment with which many students are already familiar — that of graphing calculators.

Portable CAS-equipped devices have only recently begun to appear in school classrooms.
Therefore, research studies involving the use of CAS-equipped calculators in school settings are
not commonplace. Preliminary research involving the use of CAS-equipped calculators with
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secondary school students has indicated that the tools are useful as *‘conjecture building” devices
(Edwards, 2001). However, research also indicates that CAS-equipped devices have a tendency
to perform “too many steps” for novice algebra students, while employing symbolism that is
unfamiliar or even contradictory to that found in school textbooks (Edwards, 2001). The findings
of Edwards (2001) have findings suggested a need for CAS tools designed primarily as
pedagogical teaching and learning tools — not as a tool for researchers and mathematicians. Texas
Instruments Symbolic Math Guide (SMG) was developed to address issues such as these.

2. The Need for Symbolic Math Guide

During a year-long study of CAS use with secondary school students, Edwards (2001) found
that CAS students were dissatisfied with emphasis on calculator-based methods when solving
manipulation-intensive problems. CAS student dissatisfaction appeared to be related to the
calculator’s tendency to complete large portions of problems for students.

I think most knowledge about math is learned through hand-written work. Hand-

written work gives the student a visible and mental track of what work was done

and how the problem is solved. Calculators don’t always show the individual

steps to solving equations (Mike Fine, second-year algebra student).
The screenshots highlighted in Figure 1 illustrates the results of entering the equation
xx = x_3 on the home screen of a TI-92.
x+1 x

[Fx T Fov Trvaran FE T [ T]
v a Algebra|Calc|Other|Prgnl0|Clean Up

g x3-x _x3 " (x = 1) = %2
X+ 1 X
MAUIN FAD RUTO F%( 1/30

Figure 1: Steps automatically performed upon entering equation into TI-92 CAS

As Figure 1 suggests, the TI-92 homescreen CAS automatically performs the following tasks:
1. re-expresses X —xas x- (,\:2 —1)
2. re-expresses (,\c2 - 1) as (x + 1)- (x - 1)

x+1
3. re-expresses as 1
(x + 1)

3

X 2
4. re-expresses — as x
X
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After a student decides to subtract x° from each side of the equation, the calculator automatically
performs several more steps. These are highlighted in Figure 2.

1. Expands x- (x —1) as x> —x

2. Simplifies (xz— x)— x’as —x

[f: T G TrsvTruvT 5 T Fov T"
- E AlgebrajCalc|0therPramI0 Cleaun Up

3
X2 =% _x
v x-(x—1)=x2
l[x-(x—1)=x2]—x2 -x = 0
ans (1)=x*2
L] EAD AUTE FUNC 2730

Figure 2: More calculatiomutomatically performed by TI-92 CAS

In addition, Edwards’ students complained that calculator notation differed significantly from
notation typically found in school textbooks. Several major differences are highlighted in Figures

3 and 4.
For instance, unlike conventional mathematical text, in which algebraic steps are written one

below the next, TI-92 output is read from left to right, then from top to bottom (like sentences in a
book). This is shown in Figure 3.

DD
1 Fzv F3v Y Fyv 75 FEw
- Elﬂlgebra CalclOLherlPrngO Cleahn Up

Sox xS ——p
x2-x _x

FT % e x-(x = 1) = x?
l[x-(x-1)=x2]-x2 ’ -
IMW FUNC 2730

Figure 3: Algebraic output is read like “sentences in a book™ on the TI-92 home screen

x=0

Additionally, the manner in which the TI-92 homescreen CAS simplifies expressions suggests to
students that transformations are applied to entire equations (rather than to each side of an
equation). This tendency caused confusion with novice algebra students. An example is provided

in Figure 4.
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R REREEEDDrIER——
ff:w‘[ Fe Tan nd T FE T 54 T']
v = nge;:ra CalciOther|Prgni0|Clean Up

L Ly 2'x+7=10
% +7 =10] - 2-x=3

IMRIN RAD RUTD FUNC 2/30

Figure 4: The TI-92 CAS applies a single transformation to an entire equation rather than
performing separate transformations to each side of an equation

Edwards concluded the following at the end of his study:

CAS based equation solving does not appear to support conceptual understanding

to the same extent as traditional by-hand equation solving. The awkwardness of

the TI-92 output as well as the calculator’s tendency to perform “too many steps”

automatically may have contributed to students’ preference for by-hand methods.

(Edwards, 2001, p. 299)
Traditional CAS were designed as tools for researchers — not as learning tools for young students.
Thus, they tend to perform algebraic steps automatically — with little explanation provided to the
user. In addition, CAS often display algebraic information in non-standard formats. Although
these tendencies may suffice for university researchers who need fast answers and already know
significant mathematics, they render CAS unsatisfactory as a learning tool for beginning algebra
students. As we note in the following section, tools such as SMG provide students with access to
the computational power of CAS, while at the same time providing an environment explicitly
designed to teach, not confuse.

3. Features of Symbolic Math Guide

A primary purpose of Symbolic Math Guide (SMG) is to help students develop a deeper
understanding of various algorithms used to solve algebraic manipulation-style problems. Unlike
the raw symbolic manipulation utilities studied by Edwards (2001), SMG is more faithful to the
mathematics and mathematical notation found in school textbooks. Symbolic Math Guide was
built first and foremost as a pedagogical teaching tool - not an answer generator. The program
encourages teachers and students to solve problems in a step-by-step fashion in a manner similar
to traditional pencil-and-paper methods. Several features of SMG are listed below.

o Student exercises are organized by problem sets. Teachers, publishers, and students are able
to create problem sets for particular lessons or activities. The sets may be easily shared
online or in class.

o As they select algebraic steps from menus and dialog boxes, students solve algebraic
problems in an interactive manner.

o While considering the results of students’ most recent calculations, SMG generates intelligent
problem-solving options that focus student attention on new material being learned.
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o Because SMG simplifies arithmetical expressions automatically, students may focus more
attention on theoretical aspects equation-solving. Student work is not unduly hampered by
arithmetic and lower -level algebra mistakes.

o While using SMG, students are encouraged to consider algebraic expressions and equations as
mathematical objects. SMG encourages students consider appropriate transformations to
apply to these mathematical objects to solve problems.

SMG is a self-paced learning tool to help students in learning symbolic manipulation. It offers a
source of extra problems for students who haven’t mastered a certain symbolic manipulation skill
and can be used as a quick review for exams or a quick review of previously learned symbolic
manipulation skill. The authors of this document have informally used SMG with students when
introducing new classes of problems.

4. Simplifying Expressions With Powers with TI-92 CAS
and SMG

4.1 Exploring Powers with Traditional CAS

4 F3v (v TS TEv students t i ¢
O torale e ot ool 1o us] ) CAS allows students to discover rules about

simplifying powers. By typing in several related

ax-x «2| examples into the TI-92 home screen, students
axoxx <3| form conjectures regarding algebraic rules. The
ax-x-%x%-a-a a2.,4| examples to .thc.: lgft suggest a well-known
a o X X3 X3 B X a%.x4|  “exponent multiplication” rule.

&y Xy Yy x-y-x X4-g3

XN HPH K XK ¥ X

MAIN RAD AUTO FUNC 5730

Fov Y rev Y v Y 75 i Unfortunately, the TI-92 CAS has a tendency to
e o |n1gebralCalc|other [Prom1olciean Up| | unately 1 AS ha Y

simplify more complicated expressions in one or
two steps. This tendency creates confusion for
inexperienced students, impeding their
understanding of algebraic equivalence.

Jx2)®y?

3

8y
x*-x-y x2

MaIN RAD AUTOD FUNC 1,30
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4.2 Exploring Powers with Symbolic Math Guide

~

Example: J16'x

Tupe: J(16x°2>

(Enter=0K_ > CESC=CANCEL) }
| I KAD AUTO FUNC

SIMPLIFY PEWEES

Fiv Fzv Fov
Simpl if‘gTSo 1 veTComputeT

Example: a-a4

Tupe: a*a™4

[CCxk2) AIky2) 7 (x dkxcky)

CEnter=0K >

ESC=CANCEL) )

{HAIN RAD_AUTO

FUNC 4/ 4

X
E4
Z|

RAD AUTG FUNC 171

- SELECT TRANSFORMATION 3
(x-2)° 42
x% x-y

1:divide "like factors
=9T°UTA ike tactors
isimplify numerator
isimplify denominator
S5:A/B » A:B4

tA-B 3 (1/B) A

tR-B/C *+ (R/C)-B B0
84R:Bs(C-D) » (R/CO J
TYFPE OF USE €314 « LENTERIZCK AND [ESCI=CANCEL

LAl

~NO

After starting SMG and upon selecting the New
Problem option, SMG prompts the user to select
a problem type. For instance, if a student wants
to simplify an algebraic expression, he or she
should press F1. Equation solving options appear
under F2. Computational options appear under
F3.

Inside the data entry line (at the bottom of the
screen), type in the expression
((x*2)"3*y"2)/(x~4*x*y) then press
enter. The problem is now entered into the SMG
main work screen.

Several tools are available to the user at this point.
In particular, the F3 menu option allows the user
to select subexpression. The F4 menu option
provides the user with different algebraic
wansformations that may be applied to selected
expressions.

When the problem is entered into SMG, twelve
legal choices are provided for the user. The
student can choose any of them - although some
selections lead to more efficient solutions than
others. By offering legal steps, the SMG
strengthens student understanding of rules used in

simplifying powers.
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| SELECT TRANSFORMATION '
(x-2) 3. y2
x4 x- y

B » A-B2

B 2+ <(1/B8)-

‘B/C » (A /C) B
BsCC-D> » (A-C)-<BsD>
der factors

c.ombme like factors
B:enter subex r‘ selec.t,wn

x|
=
z
o)
EY
=
=
c
=
o

FUNC 171

il SELECT TRANSFORMATION N

(x-2)%

Fl'B)"U 3 A~U-BoL

imes

order factors
xit subexpr selection
ewrite as ?

3 D

ATN RAD_AUTO FUNC 171

Tiv Tov \F3 o TEv P Frv
Prob Set Prob] E]’b]Tr‘ans Cntrl] ? Tools]

P4:Simplify Powers

(x-2)7] y2
X4'X'\J
b (A-BYAU 5 AMU-BAU

[MAIN EAD AUTO FUNC 4/ Y
£ SELECT TRANSFORMATION N
<3232
X4 Xy

=dw1de l1kef‘actors
ig @ ta

‘J numer‘a or

q4: s1mp11f‘g denommator

SH ->

61 FI/B (1/8)

7:A-B/C » (A/C):B
\ 84A- B/(C D> » (A/CO-<(B/D) J
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Since the twelve kgal choices do not include a
“power of a power” rule, students are encouraged
to look at subexpressions within the problem.
Students may use the subexpression feature of
SMG to choose a smaller portion of the problem
to simplify first.

The screenshot to the left shows the selection of

the subexpression (x-2)'.  Sub-selection is
accomplished by pressing F3 and highlighting an
expression with the calculator’s keypad.

When the subexpression (x-2)3 is selected and
F4 is pressed, a different list of algebraic options

is made available to the user.

The first option - (A«B)"U A"UB™U -
distributes an exponent across factors within
parentheses.

After (x-2)" is re-expressed as x* -2, a new
listing of algebraic options is once again provided
to the user. The group like factors and
divide 1like factors options are both
reasonable selections.
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Fiv (34 3 Fy 334 6 Frv
Prob Set|Prob @'blrranslcmrl ?IToolsl I

P4:Simplify Powers

» (A-B>*U » A*U-B™U
x3-23~92

x4-x~g
b group like factors

FUNC 4/ %

Tiv T2 Y3 T FSv \T6W F7v
Prob Set.IProbl @'bTr‘anslcm.rl ?[Tools I

P4:Simplify Powers
R R

b combine like factors

53.x3 y?
x2 Y
b divide like factors
Njuzo

RAD AUTD FUNC 4/ 4

[ n—‘Tv rz—TFv ja 4 I rjisv s?f‘r‘r_ij
Prob Set|Prob| "B+b|transCntrl| ?[Tools
P4:Simplify Powers
X X9
b CA-BX*U > A™U-BMU
x3-23-g2
x4~x‘g
} divide like factors

Ju#0

KAD AUTD FUNC 424

By selecting the group like factors
option, one is able to look at different variables
combined.

The application of the combine 1like

factors and divide 1like factors
options makes it easier for many students to

understand what is meant by “cancelling out.”

oHowever, if students are already familiar with
“canceling,” one step cancelation is accomplished
by omitting the application of combine 1like
factors.
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4.3 Anecdotal Evidence regarding SMG
Using Symbolic Math Guide informally with second-year algebra students, Edwards notes that
the tools do offer some benefits over traditional CAS. Specifically, SMG does not seem to skip
algebraic steps. Students have the ability to think more critically about algebraic transformation
when simplifying algebraic expressions with SMG. In addition, the application offers classroom
teachers an instructional partner in the classroom. Students needn’t wait for teacher approval
when checking the correctness of various algebraic manipulations. As one of Edwards’ students
notes:
I like the math guide SMG). It doesn’t do as much work for you as other
calculators, so you still have to think about the algebra. That’s a good thing for
future classes. Plus, I like the fact that the program (SMG) lets us find our own
solutions. I think it makes algebra a little more interesting because we can
experiment. The teacher doesn’t have to lecture to us so much (Zak Stevens,
second-year algebra student).
Nevertheless, the application isn’t a perfect learning tool, and it certainly isn’t as flexible as a
seasoned classroom teacher. For instance, when using SMG in classroom situations, Edwards
noted the following problems related to SMG:
o Selecting “subexpressions” within a term (e.g. highlighting (x . 2)° within the expression

m) requires manual dexterity not required with pencil and paper. Some students
x*xy
become frustrated with the “subexpression” selection features of SMG.
o After selecting a specific expression to simplify, menu options do not always contain desired
transformations. Students are left wondering “what to do next?”
o Inconsistencies exist with regard to domain restrictions. For instance, when simplifying the

3.2
w, SMG notes that y # 0 but no such restrictions are generated
x"xy
for x (see last screenshot).

o Functionality does not exist for roots other than square roots.

algebraic expression

5. Discussion

SMG has an important role in helping students to give meanings to the algebraic
transformations they frequently employ in secondary mathematics classes. In addition, SMG
provides students with a more interactive method for learning concepts of symbolic manipulation
than possible with pencil and paper. While using SMG, students are less preoccupied with
calculations — spending more time considering algebraic transformations and concepts of equation
solving. The authors of this document have found that learning is maximized when students are
encouraged to anticipate the result of each transformation they select before pressing the ENTER
button within SMG. By using SMG’s ‘Press ENTER’ mode, the application provides students with
extra time to write down predictions — showing results to students only after ENTER is pressed
again. The physical act of writing down each step with pencil and paper appears to help some
students as they learn appropriate manipulation steps. While less effective when reviewing
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previously learned material, we’ve found the ‘Press ENTER’ mode to be quite useful when
teaching material to students for the first time.

Because SMG allows students to select a variety of legal algebraic steps that are not necessarily
the “best” or “most efficient” steps, students often construct different methods to solve individual
problems. By comparing different solution strategies, students begin to appreciate the richness of
algebraic problem solving (a subject which many students see as having “only one right way of
doing things”). On the other hand, if legal algebraic steps do not lead to a solution, SMG makes it
easy for students to go back to any previous step and try different transformations. To accomplish
this task, students press the “up cursor” to get back to the step they wish to change. Then they
choose a new transformation from a variety of menu options. In addition, SMG allows students to
select subexpressions and replace them with an equivalent expressions from the keyboard. For
instance, if a student knows that x+x is equivalent to 2x, the student can highlight “x+x” and
choose a “replace with equivalent expression” menu option. SMG tests for equivalence of original
and the user-defined expressions.

We always discuss that it is necessary to connect mathematics with real life situations.
However, algebraic manipulation is one of the areas in the secondary mathematics curriculum that
can be very abstract and very monotonous for students. Because students’ minds and attention are
always busy with calculation details, it is all too easy for them to lose sight of general equation
solving techniques - particularly those involving algebraic transformation. SMG attempts to
address this problem by offering teachers and students a novel approach to learning algebra. The
CAS makes it possible for students to focus on the transformations in a visual, interactive and
technology-rich environment.
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ABSTRACT

In this paper, we will investigate some of the algorithmic inadequacies and limitations of Maple as well
as the common misuses of the software when used as a tool in teaching undergraduate mathematics. We will
present examples for which Maple produces misleading or inaccurate results. We will also refer to situations
where Maple gives accurate, but incomplete, results which are misused or misinterpreted by novice users of
the software, specifically the undergraduate students. The authors have over ten years of experience in using
Maple as a teaching tool and some examples presented here are based on those classroom experiences. Other
cases have been reported by our students, by our colleagues and in various newsgroups devoted to
discussions on Computer Algebra Systems (CASs). Many of the previously reported software bugs,
observed in the earlier versions of Maple, are now corrected in the most recent release of the software. So,
although we have occasionally referred to the older versions, we have presented the actual output only from
the latest version of Maple, namely Maple7, in this paper. For the sake of brevity, we have limited our
discussions to the topics which are ordinarily covered in the first two years of a typical undergraduate
mathematics curriculum such as limits, single and multivariable integration, series, and floating point
arithmetic. We have also tried to limit our case studies to the most common features of Maple, specifically
those features that are widely used by the undergraduate students who are new to Maple.

Keywords: Maple; technology; shortcomings; bugs; undergraduate mathematics
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Introduction

Computer Algebra Systems (CASs) have become increasingly popular tools in teaching
mathematics in the past decade. The use of CAS has caused drastic changes in teaching
undergraduate mathematics courses, particularly pre-calculus and calculus courses. According to
the CBMS survey [1], 18% of Calculus I and II courses involved computer assignments in 1995,
up from 9% in 1990. Assuming that the same trend has continued throughout the 90’s, one could
speculate that CAS has now become a major component of teaching in approximately 50% of
Calculus I and II classes. The extensive mathematical assistance, symbolic manipulations,
computational power and graphical abilities of CAS can greatly help students to explore
mathematical topics and experiment with ideas without labouring through cumbersome
calculations. The educators in mathematics community have hoped that CAS would enable
students to develop an investigative attitude toward mathematics. A multitude of textbooks,
workbooks and project manuals have been published to encourage and help the students toward
this goal. Unfortunately, most of the literature is focused on the power of CAS, use of the
commands, and to a lesser extent the programming aspects of CAS. Few of these books discuss the
limitations and inadequacies of the software and the potential for misuse of CAS. As a result, the
novice users such as beginning undergraduate students, who lack mathematical maturity, often
mistakenly, assume that the “black box™ software can solve any mathematics problem completely
and accurately. This paper is written to demonstrate some of the shortcomings of one of the most
popular CASs, namely Maple. We’ll present examples from a typical pre-calculus and calculus
course where Maple produces incomplete, inaccurate, or misleading results. We'll start each
section with an example or two where the earlier versions of Maple produced inaccurate results
and later these algorithmic bugs were corrected in the most recent version of Maple (version 7),
and conclude the section with examples and actual output of Maple7 where the software still has
difficulty to produce an accurate result. The examples are taken from a variety of topics. Although
we have many examples in our disposal, we have limited our presentation to those examples which
best demonstrate the shortcomings of the software. In section 1, we’ll discuss solving scalar
equations, section 2 is devoted to limits, and section 3 deals with sums and series. Single and
multivariable integrals are discussed in section 4. Some of the examples presented here are based
on the authors’ classroom experience and our students and colleagues have reported some
examples to us. However, most of our information is based on the Maple User Group archives and
the internet discussion groups devoted to CASs, specifically: sci.math.symbolic, and comp.soft-
sys.math.Maple.It is important to note that the authors have no intention of downplaying or
downgrading the importance of CASs in general, and Maple in particular. CASs have
revolutionalized the teaching of mathematics and we wholeheartedly endorse the CAS-based
mathematics instruction. The pitfalls of earlier versions of Maple (which many have been
corrected in Maple7) have not diminished our interest in the use of the software in our classes. We
have used Maple in our classrooms for over a decade and we’ll continue to do so enthusiastically
in the future.

1. Solving scalar equations:

It was reported in [2] that fsolve(x"5-5x,x,x=3..5), using MapleV3 gives an output of x=4
which is clearly incorrect. The solutions are x=1.76 and x=5. Apparently there was a bug in the
Newton’s algorithm. The algorithm is corrected in Maple7. In [3], it is reported that MapleV5
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command of solve(x"2=Pi*ran(1)+sin(1),x) which should have two obvious and trivial solutions
produces no answer. The following two examples are the actual output of Maple7 which
demonstrates some of the inadequacies of the software. The first example is using the command
allvalues, which should return all of the solutions of the polynomials. It appears that for the first
problem x"3*(x-1), Maple produces the expected four roots (three roots of O and one equal to 1),

but in the second example we get only one root of 5 (instead of 4 equal roots of 5):
> #Examplel.l~ find all roots of x*3(x-1)
>allvalues (RootOf (x*3%(x-1)));

1,0,0.0

> #Examplel.2- find all roots of (x-5)+4.
>allvalues (RootOf ((x-5)+4));
5

The solve command of Maple sometimes has difficulty with equations that contain floating-point
numbers, particularly when the expression involves exponents. The following example and
solution taken from [4], demonstrates such a case and offers a remedy. Specifically, it suggests
that we replace the value of the exponent by a symbolic parameter, then solve the equation in

terms of the parameter and substitute the value of the parameter at the end of the procedure.

> #Examplel.3-solve the given equation using the floating-point values.
>solve(l.03*x40.67=67,x);

Warning, computation interrupted

># solve appears unable to get the solution.Abort the computations and
use rational representations.

>evalf(solve(103/100*x~(67/100)=67,x));

508.5395605 506.3050286+ 47.62040174/, 499.6210698+ 94.822313771,

488.5464231+ 141.1909244/, 473.1784128+ 186.3187436/,
453.6520937+ 229.8091870/, 430.1390637+ 271.2800590/,
402.8459560+ 310.3669124/, 372.0126237+ 346.7262499/,
337.9100311+ 380.0385447/, 300.8378729+ 410.0110472/,

We get the solution we want (508.5395605) and a lot of complex solutions, which are omitted for

the sake of brevity, so we’ll try another approach [4]:
># solve by replacing the exponent with a symbolic parameter.
>golve(l.03*x*p=67,x);
[44175133817 i}
I)
e

> eval (subs (p=0.67,%));
508.5395595

2. Limits

It appears that if the command limit is used to determine limit of unassigned functions f and g,
all versions of Maple, including Maple7, return f{0)g(0) which is clearly incorrect. Example 2.2,
taken from [5], demonstrates another strange behaviour of the command limir. The limit in both

cases should return unevaluated. Consider the Maple 7 output:
> #Example2.1- f£find limit of f£(x)*g(x) as x approaches 0
>limit (£(x)*g(x),x=0);

f(0) g(0)
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> §iExample2.2- find limit of f£(x)*exp(-x) as x approaches infinity
>1limit (£(x) *exp(-x),x=infinity);

0

3. Sum and Series

The earlier versions of Maple (V3 and V5) had an algorithmic bug in summing infinite terms of
divergent series. Apparently, Maple did not check for convergence first, rather it used various sum
formulas, which are only valid outside the range of convergence of the series. Here are a few
examples: it is reported in [6] that the command sum((-1)Nn+1),n=1..infinity) produces a sum of
1/2, which is clearly incorrect, since the series is a well- known divergent series. The command
sum(n!,n=0..infinity) produces a surprising (complex) result of 0.69717488 —1.1557273i [7]. Most
of these bugs have been corrected in Maple7. However there are still a few left. Following is an
actual output of Maple7 for a limit/series problem. Note that generally Maple looks at the leading
term of a series for finding limits. In the following example [8], Maple clearly fails to see that the
sum of the two trigonometric terms is zero and mistakenly returns zero (instead of x) as the limit of

the expression.
> #iExample3.1- find limit of the given expression
>g:=x+(-cos(9/50*Pi)+sin(8/25*Pi)) /h;

—co —g—ﬁ + sin —8~n
50|73 25

gi=x+ - 7 -

>1limit(g,h=0);

0

Here is another example from Maple7 that perhaps has more to do with the floating-point
arithmetic [9] than series. Note that a simple change of exponent from an integer “1”to a floating-

point representation “1.”creates a totally different and incorrect result.
> #Example3.2-Comapre series expansion of 1/(1-x)*1 and 1/(1-x)*1.
>series(1/(1-x)*1,x);

L+x+x2+ 57 +x4+ 2+ 005

>series(1/(1-x)*1.,x);

4. Integration

There is a multitude of problems in single-variable integration that Maple, specifically the
earlier versions of Maple, fail to produce correct results. In fact, the majority of reported software
bugs to Maple-related Internet sites were (and continue to be) about antiderivatives and definite
integrals. The primary reason behind many of the inaccurate or incomplete results appears to be
the issue of multivalued functions in the complex plane. If the path of integration crosses the
branch cut then the definite integral often returns an inaccurate result. We suspect that there are
also problems with the implementation of Risch’s algorithm. Here are a few examples from
MapleV which since have been corrected in the most recent versions of Maple (versions 6 and 7):
it is reported in [2] that both MapleV3 and V4 fail to produce an accurate result for the simple
antiderivative  problem  of  int(sqrt(x)*sqrt(1+1/x),x) .In  another example [10],
int(log(sin(t)),t=0..Pi) returns 0 which is incorrect, while int(log(sin(x),x=0..Pi) returns —Pi*In(2)
which is correct. Following is the actual output produced by Maple7, which demonstrates some of

220



O

ERIC

Aruitoxt provided by Eic:

the persisting bugs in the software. In the first example [11], Maple gives a complex result to a
definite integral, which clearly has a real value. However, If we use the inert command for
integration (/nf instead of inr) we’ll get the correct result. The reason appears to be that by using
Int, Maple avoids finding antidrivatives and employs a numerical approach to find the result of the
integral. Whereas, if we use the int command, Maple first finds the antiderivative, and then uses
the Fundamental Theorem of Calculus to calculate the integral and somewhere in that process
Maple7 commits an error. In the second example, the inf command again produces a complex
result to a positive integrand evaluated over a real interval. Although the integral is not a trivial
one, but one expects that it be either returned unevaluated or some kind of message is given about
the non-existence of an elementary antiderivative. The numerical integration using Int produces

the correct result.
> #Exampled4.l-evaluate the integral using int and Int
>evalf (int (log(5+cos(x)),x=0..1));

1.764697796+ .88 107 {

>evalf (Int(log(5+cos(x)),x=0..1));
1.764697791

># Let's increase the digits to see if int does better
>Digits:=15;
Digits .= 15

>evalf (int (log(5+cos(x)),x=0..1));

1.76469779083464+ .136 1077 1

> #Exampled .2-evaluate the given integral using int and Int
>evalf(int (1/sqgrt (2+x+4),x=0..1));
4790759386~ .47907593861

>evalf (Int (1/sgrt (2+x+4),x=0..1));
.6775156893

We close this section with an example on double integrals. The example is taken from [12] and
involves a trivial double integral over a rectangular region. It appears that Maple7 produces
different results when the order of integration changes. The correct answer is 3.066667. The error
first reported in 1996 and it appears that it has not yet been corrected. Here is the actual Maple?7

output:
> #Example4.3-evaluate the double integral over the rectangular region.

>evalf (int (int (abs(y-x+2),x=-1..1),y=0..2));
3.216988933

>evalf (int (int(abs(y-x+2),y=0..2),x=-1..1));
3.066666667

As a final note, it is worth mentioning that the users of Maple or any other CAS sometimes use the
words “pitfall”, “bug” or “error” improperly. The user of the software, occasionally, makes an
assumption (presumption?) about a command, which simply is not shared by Maple. In the
following example [13], the user is surprised at the fact that Maple7 can not simplify In(exp(f))
which is expected to be f. However, as it is explained in [13], Maple does not know that the
parameters, t, C and R represent time, capacitance and resistance which are real numbers.
Therefore, one has to inform Maple7 explicitly that all the parameters are real. Maple7, then
returns the simplified expression. The actual output of Maple7 is presented here.
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># simplify the given expression

>result:=1ln(exp(t/R*C));
(,C]
R
result := ll(e )

()

># simplify does not work since Maple needs more information about t, C
and R
> simplify(result, assume=real);

>simplify(result);

i<
R

Concluding remarks and acknowledgements

In this paper, we examined some of the shortcomings of Maple through examples. We
presented examples from older versions of the software, which are now corrected in the latest
version of Maple. We also presented examples to demonstrate some of the bugs, which still exit,
even in the newest version of Maple. Some of the examples presented in this paper are taken from
the posted problems and solutions in various newsgroups, most notably sci.math.symbolic,
comp.soft-sys.math.Maple and the Maple user Group archives. We are very thankful to all of our
colleagues in the mathematics community, who were, and continue to be, involved in these
discussions, particularly those who utilize CASs in teaching of undergraduate mathematics. Our
main objective in writing this paper is to encourage a conversation among the mathematics
educators on the practical aspects of using CASs. We hope that our work will be of some use to
the educators in the mathematics community who are involved in CAS-based mathematics
instruction. We also would like to thank the Texas Lutheran University, which partially supported
this research through the TLU Research and Development fund.
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ABSTRACT

In the French system of CPGE (undergraduate level), CAS (Computer Algebra Sysiem) is used as a
mathematical aid. The ability of students to use CAS as a tool in a real mathematical activity is relatively easy to
test if you are tutoring them in the context of their research projects. It is not the same in exams. On these
occasions, the examiner chooses the question and the examinee has just an hour to tackle it.

In our presentation, using examples from French exams in Maple, we will endeavour to show the various pitfalls
to avoid and how an examiner can become able to assess the ability of students to use CAS as a mathematical
tool.
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EXAMS AND COMPUTER ALGEBRA SYSTEMS

In order to show how we are tackling the problem of using Computer Algebra Systems (CAS) at
exams, we have to describe the system where we are teaching (CPGE), what are the goals of using
CAS in it and what kind of exams we are talking about.

THE CPGE

The French “Grandes Ecoles” system was the result of the French Revolution (1789-1799). Before
that time, the University was mainly concerned with Theology. For some reasons that are not relevant
here, it appears that the only way to change this predominance was to create a new kind of university.
These were called “Grandes Ecoles”. As they were cut from the clerical tradition of the official
university, they became more interested in real life. Two centuries later, they remain closer to industry
than the university. The main usual criticism of the latter is its remoteness from the real world. The
CPGE are the undergraduate level of the “Grandes Ecoles”. Nowadays, this represents 40 thousand
students and 1200 professors of mathematics (of a population of 60 millions) working on the same
national curriculum. Since the exams are national, it is difficult to change that aspect. Nevertheless,
despite this centralised side, they are dispersed in large and small “lycées” throughout country
(“lycées” also deal with the secondary education of'pupils aged 15 to 18). Their size depends on the
population of the city where they are, the larger ones being in the largest cities. Some of them can have
just about 40 students, while others such as Janson de Sailly (Paris) have one thousand or more. After
two or three years in CPGE, the students usually pass their exams (roughly 85%). Then they can
choose to enter one or other “Grande Ecole” depending on their exam results, those with the highest
ones can choose whatever they want (usually the “Ecole Polytechnique” or the “Ecole Normale
Supérieure”), the other ones with the lowest score results taking whatever places are left available.
Since the Revolution, the practical success of our system has turned it into a rather selective one. In
fact, most of the best science students avoid the university to try to enter one of the “Grandes Ecoles”
so they begin their studies in the CPGE even if they finish elsewhere.

COMPUTER ALGEBRA SYSTEMS AND THE CPGE

In CPGE, the official idea is that CAS should be used as a problem-solving tool. This means that
the students have to deal with abstract ideas and CAS will perform the calculations after that. It is
quite easy to check the ability of students to use CAS in this way during the year. You have just to
give them usual problems (at home in one week) and exercises (at the blackboard in one hour), wait
and see what they have done. The final interview is sufficient to understand how and why they use (or
do not use) CAS.

The two CAS in use in CPGE are Maple and Mathematica but we mainly use Maple V (Release 5).
Programming is taught but without recursion (see [1] and [2] for an example of this teaching). To be
more precise, we use a kind of micro-Maple limited to a list of operators and functions (see table 1)
even if the students have the right to use every function they know. So, in this paper, we will focus on
it. Nevertheless, our remarks remain relevant for other versions of this software as well as for
Mathematica and others.

COMPUTER ALGEBRA SYSTEMS AT EXAMS

At exams, the written part takes place at the same time for thousands of students nationally. So, on
the one hand, it is difficult to provide them access to computers, on the other hand, we cannot allow
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them to use their own ones (whatever their size are) because it may be a source of fraud. Thus, we
have decided to test their abilities to use CAS at the oral part of the exams.

So, during this part, a computer with Maple and Mathematica is available in the examination room.
The examiner provides technical assistance. For example, he can answer to questions as: “what is the
instruction for computing an integral?” or “how can I re-initialise Maple?" He is not supposed to judge
the examinee through the questions he asks. The fact that a computer is in the room does not mean
students have to use it. Using CAS or not using it is their choice. So, the first difficulty is to recognise
that CAS may be helpful in a particular question. Anyway, the students will be judged on their ability
to do mathematics, not on their knowledge of software. Thus, we have to ask them to tackle usual
exercises where CAS can be used but is neither necessary nor sufficient.

We have chosen to discuss our criteria on examples (see [3] for others) because it is difficult to
consider this question in the abstract. Our philosophy concerning the use of CAS at exams is to use
classical exercises but to keep only those where CAS may help without doing everything.
Nevertheless, without applying it on examples, this simple idea does not take its full sense.

COMPUTER ALGEBRA SYSTEMS AS VIDEO GAMES

In a lot of cases where real programming is not needed, students can produce results without
understanding a thing on the matter. For example in the two following exercises, a basic technical
expertise is enough to find the right answer:

2tanx —tan2x

Exercise 1: Compute lim————.
0 x(1~-cos3x)

dx
1+x

Exercise 2: Compute J~0+«

2

2

4
Testing student's ability to find the right results (—5 and ) in such cases is not far from

testing their ability to play a video game. In fact, the only thing to know is how to encode the
mathematical expressions written above in the Maple language. So, you cannot tell much about the
student's mathematical knowledge through their way of doing such exercises.

COMPUTER ALGEBRA SYSTEMS AS PROGRAMMING LANGUAGES

A solution to avoid the use of CAS as a kind of video game is to ask students to program them on
mathematical examples. So, the following exercises concern programming. They have been chosen to
show the boundary between fair and unfair exercises of this kind at the mathematical part of exams.

Exercise 3: Two distinct natural numbers are called amicable if the sum of the proper divisors of
one number equals the other. Write an algorithm finding all couple of amicable numbers smaller than
1500.

Exercise 4: Write a function freturning the sum of the cubes of the digits of an integer n in decimal
expansion. Find the n such that f(n) = n.

Exercise 5: Write a function returning the index of the maximum value of a sequence of real
numbers (uy, ua,..., Uy).

Exercise 6: Find a method to compute x'° with just four multiplications. How many multiplications
are necessary to compute x»? Generalise and write the corresponding function.
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Exercise 3 is very simple if you know that there is a function computing the sum of the proper
divisors of a natural number in the number theory package of Maple (it is called sigma). It is rather
difficult if you are limited to micro-Maple. As we cannot forbid the use of the functions available in
full Maple, such an exercise must be avoided. A consequence is that, for every exercise, we have to
check if it cannot be solved by the use of just one magical function out of our micro-Maple (result:
220,284 and 1184, 1210).

A good solution of the first part of exercise 4 involves recursion (using the mathematical property:
f0) =0 and if n = 10g + r then fin) = fig) + r*). To solve the second part, you have to realise that a
solution has at most four digits and then to try all of them which is easy (result: 0, 1, 153, 370, 371 and
407). Thus, this exercise is not a bad one to test mathematical ability at undergraduate level but it
involves a real knowledge of programming. So, as it is not the main goal of our teaching, this kind of
exercises must be avoided or kept for a second question to apparently good students in this domain,
just to check how far they can go.

Exercise 5 and a lot of the same kind (as sorting and searching for example) must be avoided as
they are just programming exercises. They must be reserved for the computer science exam. Exercise
6 is at the frontier of this kind. May be it is better to avoid it too.

Anyway, in this paragraph, we see that to avoid the testing of the ability to play video games, we
test the students on their knowledge of computer science. The goal is missed. If this kind of exercises
can be used for those who are obviously good, they must be kept to them.

COMPUTER ALGEBRA SYSTEMS AS TRAPS

Another way of testing whether students really know what they are doing when using CAS may be
to give them examples where CAS results are wrong. Such cases are not difficult to find, especially in
computing integrals:

if it exists.

+o0
Exercise 7: Compute J;) —

X' —-a
i sina dx

Exercise 8: Compute f _—
-11-2xcosa+x

+o0 eu

dx.

Exercise 9: Compute'[ ™
= 1+ix

in
In exercise 7, Maple gives a clearly impossible answer (2—). It is really easy to tell that this result
a

is wrong because it is not real. So, the reaction of a student on this kind of output may be interesting.
In fact, a lot of them have a bad tendency to believe everything they see on a computer screen.
In exercise 8, Maple gives the correct but amazing result:

sin arctan —l+cosa + arctan L+cosa
al —ar —— ctan —————
vJl-cos?a VJ1-cos’a

Ji-cos’a
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AP . . 3 . T ... .
To simplify it properly in order to find the right answer (E if sin a > 0, —E if sina <0 and O if

sin a = 0), you must have some knowledge on the inverse tangent function.

. . .. T .
In exercise 9, Maple gives O as the answer (and Mathematica — ). Both are wrong but there is no
e

. . . AT
obvious reason for students to doubt any of these results (the right one is 2—).
e

It is easy to imagine a number of traps of this kind. If there are really strong reasons to doubt the
result of CAS, they can provide an opportunity to test the understanding of students but in other cases,
they must be forbidden. Thus, at exams, we prefer to avoid such exercises even if some of them are
very interesting. An implication of that is that the examiners have to really use CAS to solve their
exercises before the examination just to check they are not mining the road to the solution without
realising that.

COMPUTER ALGEBRA SYSTEMS HELPING INTUITION

The best way of finding good exercises is to take a look at our use of CAS in real mathematical
life. One of its uses is to help our intuition. Here are some examples of exercises where they can be

used in this way.
2

is 1imaginary. Represent them in the
; gnary p

Exercise 10: Find the complex numbers z such that
2z+3i

complex plane.

2
=5t
Exercise 11: Let I" be the curve given in parametric form by: M(t){ o Find the locus C of
y=2a
the point from where the tangents to I" meet at right angle. What kind of curve is C? Determine the

position of C relatively to T,

21111
1 2111
Exercise 12: Let A=|1 1 2 1 1 |.ComputeA”.
1 1121
1 1 11 2

sin ‘
Exercise 13: Let f,(x) = 1_\/rix , X € (0, +o0). Does the sequence (f,) converge uniformly?
nvx

3
Exercise 14: Consider the sequence (u,) defined by: up=a and u,,, = il foralln20,ae 0.
u, +

n

What can you say about lim u,?
n—+oa
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If students understand the exercise 10 properly, they can plot the solution directly (see figure 1). Of
course, more can be said on the curve on figure 1. The examiner will judge students on their ability to
recognise and to prove that the curve is composed of a straight line and a circle.

1
xX= [2 -1+ =
In exercise 11, CAS is useless to find a parametric representation of C ( 1 ) but very
y=--
t

useful to plot it (see figure 2). With a minimum knowledge, students can suspect that this curve is a
parabola. In the same way, they can see that the two curves are tangent. Then they have to prove these
two properties.

In exercise 12, through some computations done with the help of CAS, it is quite easy to see that

a" + 1 a” a" a" a"
all all + 1 all all all
d . . . .
A"=| a, a, a,+1 aq, a, for some a,. Then, through multiplying this matrix
all all a" all +1 all
a a a a a,+1

l n n n

n

by A, CAS help to find the law a,.; = 6 a, + 1, the result follow (T) but it needs a minimum of

mathematical knowledge.

Without visual aids, most of the students do not see that the sequence of exercise 13 converges
uniformly. With CAS, they generally see that but it is more difficult to prove it. For that purpose, CAS
is useless. This exercise does not miss the goal but is rather difficult and must be left for further testing
of an apparently good student. '

In exercise 14, a lot of students see incorrectly that nlirpmu" =1. The reason lies in their

3
interpretation of the drawing of the graph of the function f defined by f(x)= 22—1 (see figure 3).
X"+

Starting from any number «, they felt that the sequence approached | in absolute value and oscillated

from one side of O to the other. At this step, it is not too bad but what can be very upsetting is when

they are able to prove it! With a better understanding, they went to examine the graph of f o f (see
3447

figure 4). Generally, not only they see the correct result (two limit points if a # %1, the limit 1

occurs only if a = £1) but they are able to isolate the properties to be proved in order to prove it (CAS
can be helpful for this purpose). In this example, we note that "seeing" requires a lot of knowledge in
mathematics. As the previous exercise, this one must be left for a further testing.

In conclusion, all these exercises (10 to 14) are rather good to test mathematics ability even if they
are not all of the same level. In all of them, CAS is used to "see"” the correct result and to see requires a
lot of knowledge in mathematics.

COMPUTER ALGEBRA SYSTEMS TAKING CHARGE OF CALCULATIONS

In a lot of cases, CAS can be used to take charge of calculations. In this kind of use, it is important
to choose exercises where the students have either to analyse the results or to find the right calculation
to do.
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Exercise 15: Compare 2+2«/§ and \/5+2«/g+\/9—2«/g—4 5—2«/6 .

Exercise 16: Find the zeros of the polynomial P = x* - 2 x* + x* = 2x + 1. Represent P as a product
of irreducible polynomials over the real domain.

a 00 0 b
0 a b 0
Exercise 17: Let M =[0 1 2 1 O] where a and b are complex numbers. On which
0 b 0 a O
b 0 0 0 «a

condition is M diagonalisable?

Exercise 18: Let a, b and ¢ be three real numbers and M = . Find the matrices M such

S Q
e Q8 o
Q o0

that M2 = 1.

Exercise 19: Solve the following differential equation: xy+(1—x)y = )zce ]
X"+

. Plot some integral
curves. Is there any continuous solution on 0?

t
Exercise 20: Let C is the curve given by M (¢) ={ ¢’ |. Show that the osculator planes to the curve at

t3

three different points and their plane have a common point.

In exercise 15, an approximation of the difference gives a probable answer (the numbers are equal).
To prove it with CAS, you have to use a special function not in our micro-Maple (radnormal) thus this
kind of exercise is a trap because the students have no simple reason to realise that

\/SiZ«/g =+/3£/2 even if this equality is really easy to prove. This kind of example shows that
we have really to check if an exercise can be done with the use of our micro-Maple only. As a matter
of fact, knowing the property, it is very easy to believe that CAS will be a good help but it is not
always the case.

I1+v2 _ 1
In exercise 16, CAS find the zeros of P ( 2\/» +§\l—li2ﬁ) easily (with allvalues, solve is

not enough). The only mathematical problem is to assemble them in polynomials over the real field

(result x2+(‘/§—l)x+l, x_l+2«/§i\/g2—‘;)l

In exercise 17, students can think that CAS gives the answer directly but, in fact, they have to
check that the eigenvectors given are linearly independent. Computing the determinant of the proposed
vectors, we find that it is not the case if a + b = 2.

In exercise 18, CAS gives M* and help to transform the matrix equation in a system of three

a’+2bc=1 [~ 1 2 2
equations ({b* + 2ca =0) which can be solved with CAS (result: I, + 5 2 -1 2D
c*+2ab=0 2 2 -1
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In exercise 19, it is easy to plot a lot of integral curves (see figure 5) but the continuous solution is
not easy to spot among them without a theoretical study. For that, the students have to write the

e'“(%ln(x2 + 1)+ A)

general solution { y(x) = ) and to realise that the only point of discontinuity is 0

and to compute its limit at O (see figure 6).
In exercise 20, with CAS, it is possible to write the equation of the osculator plane at M(r) and of the
plane passing through points with parameters a, b and ¢ () = 3/ = 31y + z ~ I°, g(x,y,2) = (ab + bc

f(a)=0
+ca) x = (a+b+c) y + z — abc). Then, they can solve the system of equations < f(b) =0 and substitute
fle)=0

the solution into g.

In conclusion, most of these exercises (16 to 20) are rather good for testing the ability of doing
mathematics with CAS. Exercise 15 is not a good choice because it is not of the same level whether
you know a magical function or not. This kind of cases must be avoided, as they are unfair

CONCLUSION

Through these examples and counter examples, we can see that the exams in CPGE test the official
way of using CAS taught in CPGE (see [4]). The exact opposite of this way of thinking can be found
in [5]. Our main problem is that we cannot use it in the written part for the time being. CAS should be
available all the time to allow students to become completely accustomed to using CAS but there are
two problems firstly the high price of small portable computers and secondly the possibility of fraud.
Thus the testing is done only at the oral part of the exams.

Our general idea to choose exercises is to use classical ones but to keep only those where our
micro-Maple (see table 1) may help without doing everything. A good exercise must not give a
decisive advantage to those who have a knowledge of functions out of our micro-Maple or of
recursion because it will be unfair to the others. Thus, exercises involving t0o much programming
must be reserved as further tests for those who are obviously good. For the same kind of reasons, traps
as cases where Maple gives a wrong answer must be avoided or reserved for further testing. An
implication of that is that the examiners have to really use CAS to solve their exercises before the
examination. To finish with the question, we will stress two points. Firstly, experiments where the
students have to see something are rather good to test mathematical ability because "seeing" requires a
lot of mathematical knowledge. Secondly, exercises involving parameters are often good because CAS
do not discuss particular cases. So, in this kind of exercises, the students have to understand and to
interpret the results of CAS.
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ABSTRACT
A Diagnostic Mathematics Clinic serves students who are having difficulty with mathematics. In the
clinical setting, University preservice mathematics education students work on a one-to-one basis with a
student. The university students administer and evaluate diagnostic tests; conduct parent, student, and
teacher interviews; and analyze measurement and screening data provided by the school. Based on these
data, the clinician and university director develop an achievement plan for each student. This article

describes the effects of the clinical experience on undergraduate students who are pusuing certification to
teach mathematics.



Preparing teachers-a diagnostic mathematics course

The University of Houston-Clear Lake (UHCL) Diagnostic Mathematics Clinic serves second
through eighth grade students who are having difficulty with mathematics. University preservice
mathematics education students (clinicians) work on a one-to-one basis with a student. They
administer and evaluate diagnostic tests; conduct parent, student, and teacher interviews; and
analyze measurement and screening data provided by the school. Based on these data, the
clinician and university director develop an achievement plan for each student. This article
describes the impact of the clinical experience on university preservice students. In order to
better understand this impact, it is necessary to describe the operations of the clinic.

Background Information

The National Council of Teachers of Mathematics (2000) states: “‘Effective mathematics
teaching requires understanding what students know and need to learn and then challenging and
supporting them to learn it well.” The National Commission on Teaching and America’s Future
(1996} also believes that effective teachers need to understand and be committed to their students
as learners of mathematics. Working with students in a one-to-one format in a math clinic
provides a unique opportunity for preservice teachers to focus instruction based on the needs of
individual students.

According to Engelhardt (1985) mathematics clinics have different purposes: teacher
education, public service, or research. One focus of a clinic is to educate teachers to cope with
students who have difficulty learning mathematics. In this setting clinicians typically attend a
seminar sequence and practica. In the seminar, theoretical and practical topics are explored; while
in the practica these ideas are implemented with students. Dockweiler (1993) believes that the
Curriculum and Evaluation Standards published by the National Council of Teachers of
Mathematics should guide the establishment of any mathematics clinic. According to Dockweiler,
a clinic should serve three roles: providing service to the community, training teachers in
diagnosing and remediating the difficulties of students, and research. The Diagnostic Mathematics
Clinic was established using the teacher education model described by Engelhardt and
encompasses the three roles described by Dockweiler. It is staffed by undergraduate students
working toward elementary or secondary mathematics certification.

Sheila Tobias (1999) suggests finding ways to integrate the needs of future teachers into
standard undergraduate mathematics courses is difficult. UHCL has addressed this concem by
creating math courses specifically designed for preservice teachers. One such course, the
Diagnostic Mathematics Course, is offered each fall, and enrollment varies from 15 to 24
undergraduate mathematics education students. This course has been offered for more than 16
years at UHCL. Children are typically referred to the clinic by teachers or their parents.
Information about the clinic appears in local newspapers, and flyers describing the clinic are sent
to area mathematics supervisors, elementary schools, and middle schools. There is a registration
fee for the clinic, and the children meet at the university one and a half hours each week for ten



weeks. Questionnaires about the child and mathematics are completed by the parents and the
child's mathematics teacher.

Palmer (1994) stresses the importance of obtaining a solid, reliable picture of the student's
current understanding of mathematics before beginning instruction. Eaves (1992) believes the
key to successful instruction is beginning with the known and working towards the unknown.
Since the level and accuracy of prior knowledge varies with each child, he describes diagnostic
testing as a positive action to determine each student's knowledge level. The Diagnostic
Mathematics Clinic utilizes the KeyMath Revised Diagnostic Test (KMR; Connolly, 1988). The
KMR has three major areas with the following subtests: Basic Concepts - numeration, rational
numbers, and geometry; Operations - addition, subtraction, multiplication, division, and mental
computation; Applications - measurement, time and money, estimation, interpreting data, and
problem solving. In establishing these content areas, Dr. Connolly reviewed mathematical
curricula, mathematics programs, basal mathematics text books, research articles and other
publications, especially those of the National Council of Teachers of Mathematics. According to
Nicholson (1988) KMR is well constructed with excellent directions for interpretation and
comparison of scores, both within the KMR and other instruments. If the area of mathematics is
the only problem area delineated for a student, Davis (1989) recommends the KMR as the best
measure for assessing the student. The KMR was also favorably reviewed by Bachor (1989-
1990), Huebner (1989), and Finley (1992). According to Beck (1992):

In the galaxy of educational test, KeyMath-R can only be described as a brightly
shining star. From all aspects-content development, technical and normative
underpinnings, and presentation of materials-the test is an outstanding example of
the test-maker's craft.

Once the KMR has been administered and scored, the clinician develops an achievement plan
for the student. This plan is based on previous test data; information from parents, teachers, the
student; and the KMR data. The objectives described in the achievement plan form the basis for
the remaining eight weeks of the clinic.

The clinic sessions are scheduled in viewing rooms and are under the supervision of the clinic
director. Clinicians submit lesson plans prior to the clinic session, along with reflections of previous
lessons. The clinic director observes sessions and provides clinicians with feedback.

Data Collection

Preservice students were surveyed at the end of the fall semester, 2000, and asked to respond
to the following question: Will your experience working with one child in a diagnostic setting
impact your classroom teaching? If so, in what way?”

Focus on the Child

Almost all clinicians noted the importance of fostering the child’s self-esteem and positive
attitude toward mathematics. They found that by focusing on the child’s strengths during the
session, the child became more confident in his mathematics skills. The clinicians found that a lack
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of self-confidence could be a hindrance to succeeding in mathématics. They indicated that
knowing this will encourage them to keep a positive, “You cando-it” attitude as they teach.

Clinicians learned the value of establishing a supportive environment for students. One
clinician noted she thought her student understood everything because he did not ask questions. In
reality, the student was very shy and was afraid to ask questions. The clinician realized the
importance of establishing an atmosphere of trust to encourage questions from students. This
clinician plans to use a journal in her classroom and have students write down what they did not
understand in class. These problems can be addressed the following day, without the student
feeling uncomfortable.

According to Kennedy (1998) how a subject is taught tells students whether the subject is
interesting or boring, clear or fuzzy, applied or theoretical, relevant or irrelevant, and challenging or
routine. Clinicians found the importance of making instruction relevant to their students. Using the
individual child’s interests as a learning tool was found to be effective in providing meaningful
instruction. For example, one child enjoyed hunting, fishing and working with animals. Whenever
possible, these interests were included in instruction. Another student’s interest in cats was used in
a shopping game in which everything sold had to do with cats. In her classroom, this clinician is
going to survey her students about hobbies and interests and use this information in creating
mathematics problems.

Clinicians found it was important to consider a student’s attention span. A clinician noted that
lecturing to her student resulted in his becoming distracted immediately. In order not to “lose”
him, she had to completely involve him in her teaching. For example, if she were teaching a
lesson on fractions, she would give him fracion pieces to use as she taught the lesson. In her
classroom teaching, she plans to actively involve students.

The ability to learn and process knowledge at an average rate of speed were attributes one
preservice teacher had always taken for granted. After working with a special needs student, he
no longer takes this ability for granted. He never knew with certainty what his student would
retain and be able to do in subsequent tutoring sessions. This clinician decided to begin each
tutoring session and each class session with a review of the material covered the previous day.
He learned that when working with students similar to this student, it will be important to vary
instructional activities and to provide as much structure as possible when working mathematics
problems.

In working with one child who was experiencing difficulties in mathematics, clinicians felt they
would be more aware of special needs students in their classrooms and have a better idea of how
to fulfill their needs. “I have the tools to be able to determine the ways in which a student with a
learning problem might learn best.”

Instruction

All clinicians administered the KeyMath diagnostic test and developed and administered their
own diagnostic test. They noted the importance of the diagnostic test in identifying each child's
individual needs. In their own classroom, many clinicians indicated they would administer a
diagnostic test prior to teaching a new unit or chapter to identify students’ weaknesses as well as
prior knowledge. They felt, in a classroom, diagnosing problems quickly can prevent wasted time
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and “"grasping at straws." According to clinicians, "Whether it be discussing the results of a
diagnostic test administered by a diagnostician or developing, administering, and evaluating my
own diagnostic test, I feel prepared to discover the weaknesses of a particular student or of the
class as a whole. I now realize the importance of diagnosis in my class, and 1 am going to use
techniques for a quick diagnosis during the monitoring and adjusting phase of my teaching.”

University students also noted the importance of minimizing or managing frustration. One
clinician noted his student seemed to have forgotten some important concepts that had been
discussed in the previous tutoring session. _Throughout the previous session, the student seemed
to understand the concept. Yet, when she tried applying the concept during the following session,
she could not. The clinician was frustrated for a number of reasons. The clinician began to
wonder if he had done a good job; had he spent enough time with his student on the subject
matter; had she already forgotten what she had learned last week; or was something else
preventing the student from working with the concept. The clinician's comment, "If there is a
frustration level in working with one child, there must be a twenty-fold frustration level in working
with twenty children." This clinician believes that by realizing that some children may have low
retention, he can "turn & around” and use it as a challenge or opportunity. "When I teach I will be
constantly asking myself, 'What can I do to maximize retention? This is where opportunity
knocks on my door, and I have to be ready to answer it."

Success of students, according to the clinicians, is very dependent on mastery of concepts at
lower levels. If, for example, a child has trouble with rational numbers, it would be easy to assume
the problem lies with rational numbers. Yet, with proper diagnosis, the problem may be with
earlier concepts such as numeration, addition or multiplication. Clinicians believe working in the
diagnostic setting has given them tools and knowledge to work with students to determine where
the actual "breakdown” of knowledge occurs.

Organization and being prepared are critical attributes noted by clinicians. Each tutoring
session required a lesson plan, which incorporated manipulatives and a variety of activities.
Obtaining the manipulatives, organizing each lesson, and adapting the lesson to students abilities
are required by classroom teachers every day. Clinicians found the tutoring sessions were more
successful when they were better prepared and more organized.

Clinicians also reported the importance of flexibility. One ADHD student would come to the
tutoring sessions in various moods. One day he would come to the clinic eager to work, while the
next week he would complain about being tired and choose not to do any work. The clinician
found letting the student rest or simply talk about his problems helpful. After the student was able
to rest or vent his frustrations, an assignment or activity could be performed successfully. In his
regular classroom, this teacher said he would develop a "time out” format where students will be
given short breaks away from the regular activity. Upon completion of the break, students would
return to the activity and complete the assigned task without penalty. Clinicians learned that even
with the best preparations and the best intentions, sometimes a lesson does not work the way you
thought it would. They learned to take a deep breath, back up, and try again.

Perseverance was also recognized as a valuable asset. If something does not work, do not
give up; try something different. A clinician noted you "must be patient enough to take the time to
find the method that will work with each child.” Another clinician noted she had the time to look
at a variety of different manipulatives, to try them out, and discover which ones were the most
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effective for her student. When working with an entire classroom of students, this clinician feels
that if a certain method or tool does not help a particular student, she will be able to use another
one that might better meet the student's needs.

Clinicians have learned to never underestimate a student, to always have more material and
activities planned than they think they will be able to do. This was a surprise for preservice
teachers. According to one clinician, she had planned her first lesson plan, establishing reasonable
time goals to accomplish each objective. However, at the end of the lesson she had extra time
and no additional activities planned. The clinician had not considered what she would do if this
happened and stated "After this experience I will forever have more materials and activities than
necessary."”

One preservice teacher discovered the use of manipulatives and games to enhance children's
learning. Based on the success of using manipulatives and games with one child, she plans to
incorporate manipulatives and games in her own classroom. Another clinician found his student
learned mathematical concepts by first using manipulatives and then applying the concept. He
realized everybody learns in different ways and he will have to be prepared to teach twenty or so
students in several different ways. "I will be prepared with two or more manipulatives for each
mathematical concept I plan to teach.”

A preservice teacher found that students can effectively learn mathematics without a lot of
worksheets. Her student enjoyed the games and manipulatives and based on test scores, the
student’s mathematics skills improved. This clinician is going to incorporate games and
manipulatives in her classroom, and she is also going to recommend that her parents 1se games
and manipulatives with their children at home.

Additional Insights

Clinicians realized there were factors outside of school that as a teacher they will have no
control over, and they must stay focused on what they can do to help their students, including
asking for help from other teachers and administrators. Scheer and Henniger (1982) describe the
clinic as an ideal setting for parental involvement in the educational process. One of the
requirements of this program was that the clinician interview the parents and teacher of his or her
student. A clinician indicated she has learned how to discuss a student's mathematical weaknesses
with parents and teachers. She also learned questions to ask that lead to a greater insight into the
student's problems. Clinicians learned the importance of input from the student's parents. They
were able to provide background information that helped the clinician determine the best strategies
in working with the student. Clinicians indicated that communication with the parents of the
students in a teacher’s classroom will be equally important.

Assessment of Clinical Experiences

A preservice teacher noted:
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A teacher's teaching abilities are always work-in-progress. She can always
improve, if not a new technique for teaching, perhaps a new understanding of
learning - a diagnostic setting provides that opportunity.

According to another preservice teacher:
The diagnostic clinic has given me time to work, talk, and enjoy a student in a
way that would be difficult to do when there are twenty-five students in a
classroom. This experience will be a valuable memory to remind me to take
time to enjoy and get to know my students so that I can provide for them, in a
personal way, learning that is exciting and fun.

Another clinician noted:
I can use the knowledge I gained from teaching in the diagnostic clinic to
become a better teacher. I will remember my work in the clinic and consider
often if different activities or a different approach might help the learning
process. I will also remember to praise students often when they are
successful and try to be flexible with my teaching methods when I see
frustration from my students. Most of all, I will try to be available to the
students for the one-on-one contact that is often lost in the large classroom.

A preservice teacher reported:
The most important lesson I learmed from working with Kristen in the
mathematics clinic is accomplishments, accomplishments by Kristen and
accomplishments by me. When Kiristen felt good about correctly answering the
problems assigned to her, a little grin would appear on her face; she would have
this little smile that I interpreted as "I'm good.” This had to be one of the most
warming experiences I have ever felt. I knew I had done well. Not only had
Kristen accomplished the task of learning, but I had accomplished the task of
teaching. Diagnostic teaching is an attitude that cares very much about each
student's learning. I will carry this attitude with me into the classroom.

Impact on Public School Students

Public school students who participated in the Diagnostic Mathematics Clinic from Fall 1991 to
Fall 1995 were surveyed. Fifty-five students who completed the program with both pre and post
scores were included in this study. On the first day of the clinic, the university student
administered the KMR to his/her student. On the tenth and final day of the clinic, the alternate
form of the KMR was administered. A total of 45 students received tutoring in the Basic
Concepts area of the KMR. Table I presents the mean scores for the Basic Concepts subtests.
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Table 1

Average of the Percentile Scores for
the Basic Concepts Subtests
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The second area of the KeyMath-R test is the area of Operations. Table 2 shows the mean
scores for the Operations subtests. Forty-eight students received tutoring in the Operations
subtests with more students receiving tutoring in subtraction than in any of the other subtests.

Table 2
Average of the Percentile Scores for
the Operations Subtests
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The final area of the KeyMath-R diagnostic test is Applications. Fifty-four students received
tutoring in this area. Table 3 presents the mean scores for the Applications subtests.
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Table 3

Average of the Percentile Scores for
the Applications Subtests
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Conclusion

The results of this study indicate the positive impact of clinical mathematical experiences on
preservice mathematics teachers. Novice teachers have detailed how the clinical experiences
have assisted them in focusing on both the student and instruction as they teach and plan to teach
mathematics. The clinic gives university students the opportunity to practice mathematics
instructional techniques with a student on a one-to-one basis and the confidence to try various
manipulatives with students. In addition, the clinic provides teachers with practice in writing
lesson plans, diagnosing students' problems, and reflecting on lessons taught. The impact of the
clinical experiences of public school students is also significant. These students improved in their
understanding of mathematics and informal assessment indicated a change in students’ attitudes
about themselves and mathematics.
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TEACHING AND LEARNING MATHEMATICS WITH VIRTUAL WORLDS

Michael BULMER
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ABSTRACT

Much of mathematics and statistics is taught using textbook examples and exercises. It is difficult through
these to give students a feel for the broad issues involved. Ideally students could carry out experiments in the
real world to then model and analyse mathematically. However, this is not practical for large classes and the
logistics may even detract from the learning. We propose using virtual worlds instead, allowing students to
manipulate the parameters of a simulated experiment and record the results. These simulations should be messy,
requiring the students to think about measure ment issues and noise and how these impact on the mathematics.
The results can then be used as a starting point for teaching, in place of the traditional exercise settings. We give
experiences and feedback from several virtual worlds for statistics and dis cuss current work on virtual worlds for
calculus.
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1. Introduction

Teaching large service courses in calculus and statistics is a difficult challenge, requiring the
motivation of students whose main interest is typically not mathematics and whose mathematical
backgrounds can vary greatly. On the other side, student learning is affected by similar issues.
Additionally a current concern for many students is time pressure and the need for efficiency. Lectures
and laboratories based on virtual worlds aim to address these issues. They motivate theories and
methods by providing a concrete setting, which relates to nonmathematical interests. They emphasise
qualitative aspects of the course, allowing students with weaker mathematical backgrounds to gain
confidence. And they achieve these aims without adding to student workloads, an important efficiency
for large classes. The use of virtual worlds is also suitable for smaller and more specialised settings,
and for secondary schools.

In this paper we describe some virtual world activities used in teaching an introductory statistics
course. Section 2 describes an exercise using virtual rats, a simple enrichment of a textbook exercise.
This is extended in Section 3 to a virtual world involving a more complex interface, with animated
plants growing under various conditions, in which students have a more active role. Section 4 then
looks at similar settings under development for teaching a comparable service course in calculus. We
conclude with general discussion in Section 5 on the effectiveness of the approach.

The focus of the paper is on student experiences with the virtual worlds. Technological approaches
to teaching such as this are often exciting for the developer but are ultimately worthless unless
students enjoy them and, more importantly, can see that they will help their learning. At the end of the
final laboratory session the students were surveyed to obtain feedback on their use of the various
virtual worlds. The survey questions were very general, such as “Please comment on the use of virtual
rats in Practical 2”. Of particular interest is whether the students would identify the motivating
principles behind the use of the virtual worlds. The comments received, both positive and negative, are
given along with descriptions below.

2. Virtual Rats

Most introductory statistics textbooks are rich with real data sets, allowing students to relate the
results of their explorations and analyses back to real scenarios. This is certainly desirable; Cobb and
Moore (1997) suggest that “statistics requires a different kind of thinking [to mathematics], because
data are not just numbers, they are numbers with a context.” However, it is still a somewhat passive
experience because the students have to take the context for granted. They have not been involved in
obtaining the data and so lack ownership of the setting. Mackisack (1994) gives an overview of the
other benefits of experimental work. For instance, the students also get an appreciation of the practical
issues involved in carrying out experiments and collecting data, an outcome encouraged by Higgins
(1999). The first aim of using virtual worlds is to engage the students in thinking about the design of
the experiment and the origin of the variability in the data, while not allowing this to be so time
consuming that the rest of their learning suffers. Additional emphasis on the practical issues
mentioned above is provided by the virtual plants in Section 3.

As an example of a virtual experiment, consider a setting described by Moore and McCabe (1998)
of a two-way analysis of variance, which involves an experiment for exploring the effects of calcium
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and magnesium on blood pressure. Three levels of each mineral in the diet of rats were considered,
giving nine possible treatments to try. A standard textbook exercise would give the resulting data, or
simply the summary statistics from the nine treatment groups, and then use questions to have the
students visualise the data or test for main effects and interactions using ANOVA.

A simple nterface for a virtual version of this experiment is given in Figure 1. Here the user can
specify the calcium and magnesium levels (each Low, Medium, or High) for a particular rat and then
click the measure button to find out its blood pressure after the treatment. Clicking again returns the
blood pressure for another rat. An appreciation for the effect of the treatments and of the variability of
results can be obtained easily in this simulation; carrying out this actual experiment would not be
practical in a statistics course, especially with a large first-level class. A student commented that “it
was an interesting way of collecting the data rather than simply being given data to work with.”
Another noted that “it was a good way to investigate the effects on rats without using actual rats”,
suggesting that they really identified with the virtual setting, despite the simplicity of the interface.
Along similar lines, a further student appreciated the difference between the virtual world and the real
world by saying that it was “better than using live ones as it cuts outside variables.”

Dist Settings Measuremeants

Calcium level:
Blood pressure:

—

Magnesium level:
$ Maasure

Figure 1. Blood pressure experiment

Using this in a computer laboratory exercise, the students are not told to try all nine possible
treatments. Instead they are told that they have a budget of 30 rats and have to use these to explore the
effects of the two minerals on blood pressure. They have to think about how best to do this, including
such standard questions as determining the number of possible treatments. Indeed some will just look
at the four treatments using the Low and High levels of each mineral, giving more observations for
each treatment, while some will work with the full nine. One mineral can also be left fixed, allowing
exercises in one-way ANOVA or in two-sample comparisons. One student complained that “the
number of combinations we had to do was a bit tedious”. However, this is the whole point of the
exercise, to make the activity of data collection more concrete. In fact most students highlighted the
speed of the process: “very easy to use, and being able to repeat the treatment so quickly makes it very
efficient and time saving.”

The virtual world is set up so that there is an identifiable interaction between the two minerals. This
exercise is used at the beginning of the course, introducing main effects plots and interaction plots
from which the students can detect and understand the interaction present. The lecture course itself
does not say much about two-way analysis of variance, yet this simple exercise allows students to
appreciate the ideas involved and the types of effects that can result.

2435



O

ERIC

Aruitoxt provided by Eic:

3. Virtual Plants

The virtual rats have proved successful in getting students to think about statistical issues beyond
the mechanical techniques that are typically emphasised. However, they leave out one important step
and that is the measurement process. The way the measurements are carried out, with possible errors
and biases, can have profound effects on the statistical analyses that are carried out. It is not clear, for
example, whether the variability that the students observe in their virtual blood pressures is coming
from differences in the rats or from errors in the measurements.

Simulating the measuring of blood pressure on rats is a difficult activity to capture in a concrete
manner. An alternative setting was created using virtual plants (Bulmer, 2001). The interface, shown
in Figure 2, is similar to that for the rats with two factors that can be controlled. Four levels of
nitrogren fertilizer can be specified (None, Low, Moderate, and High) along with three levels of
irrigation (None, Some, and Lots). However, rather than being able to obtain a series of measurements
by clicking a button, the user instead gets a movie which shows the growth of 12 plants, 6 with one
treatment and 6 with another. Figure 3 shows the last frame of one such movie; all plants received
some water, but the plants at the rear had moderate fertilizer while the plants at the front had low
fertilizer. A student noted that this was “better than [the rats practical] — could actually see the results
in picture form which gave a better idea of what happened.” The virtual plants were generated using
L-systems (Prusinkiewicz and Lindenmayer, 1990), which has the side benefit of introducing curious
students to some contemporary mathematics.

Subplat A Subplot B P
U™ oy,
. . R QE‘ bVl
Nitrogen level: Nitrogen level: Crag ~hL AT e
R g 2 s
Modarata . o ¢ B
< ~ 7
Irrigation level: Irrigation level: . -

Grivy Flants

Figure 2. Plant growth experiment  Figure 3. Final frame of plant growth movie

Instead of being given a measure of growth for each plant, the students now have to deal with task.
Students need to start by thinking about why they might be measuring plant growth. They could
measure the heights of plants if they wanted to see which treatment gave taller plants, or they could
count branches, leaves, or flowers if they wanted to see which gave higher yields.

Measurements of height can be made from the screen using a plastic ruler. It is quite a satisfying
experience to walk into a computer laboratory and see a room full of swdents with rulers up to the
screens. They are physically engaging with the setting, rather than passively taking a set of mysterious
numbers from a textbook exercise, or even from a real study.

Measuring height with a ruler is difficult because it is hard to know where the top of a plant is; they
branch outwards after an initial vertical growth. Counting flowers or leaves is difficult because it is
hard to know you've seen them all, just as in real life. The measurement process should be difficult



and students should have think about what simplifications or estimates they are making. One student
complained that “it would have been more helpful and easier to use if some kind of variable was
presented with the movie as a result (rather than making student measure it off the screen)” but most
saw the purpose of the exercise in that it “made it more interesting than copying information out of a
data set.”

The main complaint was that the graphics were not clear enough to make accurate measurements,
such as counting the number of leaves. Again this is partly useful, keeping the measurement process
difficult, but it does not reflect reality very well. If students were working from a photograph of the
field then they would not have the pixelation problem. A new set of virtual plants has been developed
for 2002 using ray traced graphics to give much clearer images of the plants. One disadvantage of this
is that it uses a perspective projection, rather than the parallel projection seen in Figure 3, which will
make measurements of height more difficult. This may be offset by the inclusion of shadows and other
visual cues.

4. Calculus and Dynamics

Service teaching in statistics is not the only area where students need to appreciate the relationship
between the mathematical ideas and the underlying reality that it models. Much of calculus teaching is
directed towards students in other disciplines, such as engineering and physical and biological
sciences, for whom similar motivational issues are present.

Exercises are currently being developed based around such settings as a virtual pendulum and a
virtual planetary system. The pendulum world is simply a series of videos of real pendulums with
different string lengths and weights. This is a simple setting that could in fact be done quite easily by
students, but again it may be more efficient to have the virtual world preprepared on the computer.
Different students can collaborate on their analysis of the same physical setting. As with the plants, no
measurements are given to the students. It is up to them to make measurements of the string length and
the weight (which is an interesting visual problem) and then of periods and other dynamic quantities.
The planetary system is computer generated, showing a fictitious system and allowing students to
make measurements about radii (a non-trivial task for elliptical orbits) and motions.

These settings aim to work on two levels. Firstly, the students can graphically explore the
relationships between the quantities they measure, such as the period and string length of the
pendulums. This is appropriate for students at the secondary level, and leads on to the idea of
summarising relationships using function curves. Secondly, students at the upper secondary and
tertiary levels can look at mathematical models for these systems, use their measurements or external
information to estimate the parameters in these models, and then compare their models with the
observations. They can then look at discussing why there might be discrepancies between the mode!
and the measurements.

5. Discussion

The virtual rats experiment was very simplistic, lacking any graphical output to immerse the user,
but in the past four semesters it has consistently received positive feedback. Almost any statistical
textbook exercise could be converted into such an experiment by first modelling the data and then
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using that model and random number generation to recreate the data “live”. It gives students
ownership of their work by putting the data into a context. It also means that students each have
different data sets, which helps encourage cooperative learning (Magel, 1998) and broadens their
learning experiences.

For the course in question, the students are also given projects in which they are asked to design
and carry out their own experiments, followed by statistical analysis and the writing of a mock journal
article. This is a rich form of assessment, but in a class of 500 it is difficult to have one-on-one
discussions about each student’s intended experiment and the issues they may face. The use of the
virtual worlds in the laboratory setting allows students to discuss experimentation aspects in an
immediate way, using the simulation to highlight important points.

In all the use of virtual worlds has been very effective, both in terms of time and in terms of
engaging student interest. “It was efficient (non time wnsuming) and allowed for an understanding
(better) through experiencing it (working it out)”, as one student wrote. The virtual plants emphasise
the “nonmathematical statistics” proposed by Higgins (1999) and along with other visual models, like
the pendulum, are thus suitable for a range of mathematical abilities, particularly in secondary schools
and in service courses. Fearnley-Sander (2001) has suggested a similar approach for teaching and
learning algebra, and it is likely that virtual worlds have many other applications in mathematics
education.

Acknowledgements: The virtual plants were developed with the educational assistance of Lesley
Neely (West Moreton Anglican College, Queensland) and the technical assistance of Jim Hanan
(Centre for Plant Architecture Informatics, The University of Queensland).
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ABSTRACT

Linear algebra is a language which is used in all sciences (and beyond). For a class consisting
of students in mathematics, computer science, physics, engineering, microtechnics, chemistry,
we use a multidisciplinary approach to this field by example and application. Starting with
linear systems, we extract the general features from three motivating examples.

In the first one, we show that it is impossible to cover a sphere with (curvilinear) hexagons
only. In any subdivision using hexagons and pentagons, a fixed number of twelve pentagons
is needed. This is shown by row operations on a system of 4 equations in 5 variables. Here,
the surprise is that although the system is under-determined, one variable has a fixed value.
Several natural examples may illustrate this necessity: Football ball, buckminsterfullerene
Cgo, architecture, protozoa...From the dodecahedron we get a special solution having no
hexagons. All others are derived from this one by addition of a solution of the associated
homogeneous system.

In the second example, we consider a chemical reaction (composition of the atmosphere,
according to Lord RAYLEIGH), in which the coefficients have to be determined. The superpo-
sition principle for homogeneous systems appears quite naturally in this context.

Finally, to exhibit the power of the general principles, we consider a huge system obtained
by digitalization of a potential on a grid. If the values are given on the boundary, then there
is one and only one solution for which the value at each interior point is the mean value of the
four neighboring points. It is indeed easy to show that the associated homogeneous system
has only the trivial solution.

In our opinion, these motivating examples are accessible to undergraduate students. Lin-
ear equations may be amplified and added; thus linear combinations appear. They can be
dependent, whence the interest in giving a maximal number of independent ones; here is the
rank. Linear equations thus furnish an ideal approach for the language of vector spaces and
their dimension.
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Introduction

Linear algebra is a cornerstone in undergraduate mathematical education. It develops
a general language used by all scientists and is interdisciplinary in essence. It hence
evolves naturally towards abstraction. For most students, it is a first contact with
modern mathematics. I propose to approach it by concrete examples. In this way, its
power and relevance is immediately realized.

Let me only sketch here a possible start with linear systems, already furnishing
a meaningful and valuable part of linear algebra. Two by two (and three by three?)
systems may have been solved in high school. But now it is important to consider
more general ones, and choose examples creating surprise, leading to questions, general
methods. . ., with cultural relevance, aesthetic sense, or having as many of these quali-
ties as possible!

1 First Example: Covering a Sphere with Hexagons
and Pentagons

Question: Is it possible to cover the surface of a sphere with (curved) hexagons only?
Answer: From a bee “it is difficult!”; from EULER: “It is impossible!”

To prove the impossibility, we consider a generalization. Let us try to cover a sphere
with hexagons and pentagons only. We know that this is possible.! The dodecahedron
yields such a covering with 12 pentagons (and no hexagon). By convention, we juxtapose
two polygons along a common edge, three polygons having a common vertex. It is easy
to find a few equations, linking the unknown numbers of such polygons. More precisely,
let us introduce

z : number of pentagons, ¥ : number of hexagons,
e : number of edges, f : number of faces, v : number of vertices.

The number of faces is equal to the sum of the numbers of pentagons and hexagons,
hence a first obvious relation: f =z + y. Since each pentagon has five edges, and each
hexagon has six, the expression 5z + 6y counts twice the number of edges (edges belong
to exactly two polygons). Hence a second relation 5z + 6y = 2e. Our convention shows
that the sum 5z + 6y also counts vertices three times and we get 5z + 6y = 3v. From
this follows 2e = 3v, but this relation adds nothing new since it is a consequence of
the previous ones. Another, more subtle relation was discovered by EULER, namely?
f + v =e+ 2. We have obtained a system consisting of four equations linking the five
variables z, y, e, f, and v:

z+y =
Sr+6y = Z2e,
Sr+6y = v,
f+v = e+2.

1Such configurations occur in architecture, sport, chemistry. ..
21t is valid for any decomposition of the sphere into polygons, with no restriction on the number of
incidences at the vertices.
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Grouping the variables in the left-hand side in the order e, f, v, z, vy, these equations
are

f_x_y = 07
2e —5x—6y = 0,
3s—5z—6y = 0,

e—f—v = -2

To save space—this savings has enormous benefits—we replace an equation by the
sequence of its coeflicients, not forgetting to include a 0 in the place of a variable that
does not appear explicitly. For example, the equation f — z — y = 0 stands for

Oe+1f+0v—1z—1y=0 abbreviated by therow (010 —1 —1:0),

separating the left- and right-hand sides by vertical dots. The whole system is thus

0 1 0 -1 -1
2 0 0 -5 -6
0 0 3 -5 -6
1 -1 -1 0 0 : =2

The big parentheses have the sole purpose of isolating the system from the context(!). It
is advisable to start the enumeration by an equation containing the first variable, so we
permute the first and last equations and obtain an equivalent system. .. As is explained
in any linear algebra textbook, row operations may be used to bring the system into a
staircase form

1 -1 -1 0 0! =2
0 1 0 -1 -1} 0
0 0 1 =3/2 =2 2
0 0 0 -1/2 0} —6

The last equation of this equivalent system is —z/2 = —6 implying z = 12.

Here comes a surprise: Although the system is under-determined (only four equa-
tions linking five variables), the number of pentagons in any subdivision of the sphere
(into hexagons and pentagons only) is fixed and equal to 12. Isn’t this remarkable! On
the other hand, the number of hexagons is not fixed. Several natural examples illustrate
this. (Recall that the audience is not necessarily interested in pure mathematics, so
why not spend a few minutes to show the importance and ubiquity of the result found;
a few slides may help.)

(a) We already mentioned that a partition of the sphere is easily obtained with twelve
pentagons and no hexagon: z = 12 and y = 0 (simply project a regular dodecahedron
onto the surface of a sphere).

(b) Another solution with y = 20 (and z = 12) is obtained as follows. Start with
a regular icosahedron (12 vertices and 20 faces formed by equilateral triangles). Cut
the vertices, replacing them by pentagonal faces (thus replacing the triangular faces
by hexagonal ones). The polyhedron thus obtained has 60 vertices representing the
positions of the carbon atoms in the buckminsterfullerene Cgo.
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(c) One can construct a geometrical solution with ¥ = 2. Start with six pentagons
attached to one hexagon. This roughly covers a hemisphere. Two such hemispheres—
placed symmetrically—will cover the sphere.

General solution. Mathematically speaking, one can take for y any value—say y =
t—and then

=12, y=t, e=3t+30, f=t+12, v=2t+20.

provides the algebraic solution of the proposed linear system. 3

General Principle. The general solution is the sum of the particular solution coming
from the dodecahedron and the general solution of the associated homogeneous system,
here depending on the choice of a parameter ¢ (there is one free variable).

Further themes. (1) Construct infinitely many geometrical solutions with two groups
of 6 pentagons (Hint: Consider two types of tubes). (2) What happens if the sphere is
replaced by the surface of a torus? (The associated homogeneous system appears.)

2 Second Example: A Chemical Reaction

The first example has shown that homogeneous systems are both important and simpler
to study. Let us turn to one of them. When Lord RAYLEIGH started his investigations
on the composition of the atmosphere around 1894, he blew ammoniac and air on a
red-hot copper wire and analysed the result. Let us imitate him, and consider a typical
reaction of the form?

QJNH3+y02+ZH2 — u Hy0 + v No,

where the proportions z,...,v have to be found. Equilibrium of N-atoms requires
z = 2v. Similarly, equilibrium of hydrogen atoms requires 3z + 2z = 2u and finally, for
oxygen, we get 2y = u. Proceeding systematically, we have to choose an order for the
variables. We adopt their order of occurrence in the chemical reaction: z, y, z, u, and
v, hence write the system in the form

z —2v =0,
3z +2z —2u =0,
2y —u =0.

Now, observing that the right-hand sides are all zero, it is superfluous to include the
last coefficient 0 common to all equations. Thus we simply replace the first equation
by the row (1000 — 2), so that the system is represented by the array

100 0 -2
302 -2 0
020-1 0

3Notice that many algebraic solutions have no geometric realization. For example, one may take
Y= % (z = 12) and adapt correspondingly e = 31.5, f = 12.5, v = 21. Similarly, one can take y = —1
together with e = 27, f =11, v = 18. A necessary condition is that y should be a nonnegative integer!
But this condition is not sufficient. There is no covering of the sphere consisting of twelve pentagons
and just one hexagon.

4We add hydrogen for mathematical interest, but be careful of the explosive character!
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From the second row (or equation), subtract three times the first one, and then, permute
the second and third equations. This leads to the staircase shape system

100 0 -2
020 -1 0
002 -2 6

The last equation is
22 —2u+6v=0 orsimply z—u+3v=0.
If we choose arbitrarily v and v—say u = « and v = b—we have to take
z=a—3b.

The second equation then leads to 2y = a, and the first one furnishes z = 2b. Thus, for
each choice of a pair of values for 4 and v, there is one and only one solution set®

z= 2b x 2b
y= 3a y 30
z= a—3b or equivalently z | =] a—3b
u= a U a
v= b v b

Observations. This problem concerns proportions. We can deal with numbers of
atoms, or numbers of moles.® If a solution is found, any multiple will also be one. We
may also add or combine multiples of solutions to obtain new ones. A first case is
given by the choice u = 2, v = 0, hence z = 0 (no ammoniac); it corresponds to the

elementary reaction
Oy +2Hy — 2H20,

namely the synthesis of water. Another one—in which Lord RAYLEIGH was interested—
is given by w = 6, v = 2, hence z = 0 (no danger of explosion!) which corresponds to
the elementary reaction

4NH3+302——>6H20+2N2

Any solution is a combination of these two basic solutions. The general solution of the
system depends on two arbitrary parameters. 1t is easy to generalize.
Results. Any homogeneous system having more variables than relations has a nonzero
solution. The solutions of a homogeneous system exhibit the following structure

¢ Any multiple of a solution is again a solution,

© The sum of two solutions is also a solution.
Linear equations (rows of a certain type) may be amplified and added; solutions (vertical
lists) may similarly be combined. The language of vector spaces emerges in a relatively
general context,.

5A solution set is a list of solutions, written vertically.
6Fach mole contains approximately 0.60221367 x 10?4 atoms. This is the Avogadro number, namely
the number of atoms in 12g. of carbon, or the number of oxygen molecules O3 in 32g. of oxygen, etc.
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3 Third Example: Potentials on a Grid

It is important to realize that systems containing several hundred or even thousands
of equations and variables occur frequently. These systems are often incompatible, or
under-determined, and it is highly desirable to have efficient algorithms to discuss them.
In particular, it is impossible to use tricks or guess work to solve them! This is why
a systematic discussion has to be carried out. The first problem is that the alphabet
is too poor to code so many variables and we have to number them, thereby ordering
them:
T1,292,23,...,%yp.

As before, instead of the equation a2z, + a2y + azzs + - - - + a,x, = b, we simply write

the row of its coefficients: (a; az as ... a, : b). At this point, one should explain the
following

Basic Principle. A linear system having as many equations as variables can always be
solved in a unique way if the rank of the associated homogeneous system is maximal.
(Indeed, the reduced staircase system exhibits no compatibility condition, and there
are no free variables.)

Consider now in the plane R?, a certain bounded domain D (e.g. a disc, the interior
of an ellipse, or a rectangle, etc.). We are looking for a potential inside D, taking
prescribed values on the boundary. To approach this physical problem, we introduce
a square mesh in the plane, and only keep the squares having a nonempty intersection
with D. We are left with a certain set of vertices F;, edges and square faces. Here is
an example

+ A+ ++++
tA++++ A+ A+
I i i A
+ 4+ 4+ + +
+ + +
+ + +
++ 4+ ++
+ 4+ 4+ ++

+ 4+ ++

+ 4+ + +
tH++++ A+ A+

tH+++ A+

+ 4+ + +
+ 4+ ++
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Replacing the boundary points by a bullet, we get

o e e ©
o + e o + e
e + + o o + + + o
e + + + + + e
e + + + o o o + + o
o + + o o + + e
o + e o 1+ e
o + e o + o
o + -+ o o 4+ e
o + + + e o 4+ + o
o + + + + + + + o
e + + + + 4+ e o
e o o o o

The vertices which are not boundary ones have four neighbors, conveniently called
North, East, South, and West. We are looking for a function (potential) defined at
all interior points having the mean value property. Starting from known values at the
boundary points,” we introduce variables z; for the unknown values at the interior
points P,. If the four neighbors of an interior point P; are Pp, P,;, FP., and P;, there is
a corresponding equation

Tp + T + Tr + Ts = 42;.

Here, p = N(7) is the index of the northern neighbor of F;, etc. It may happen that all
z; are unknown, in which case we get a homogeneous equation

Tp+ Tq+ 2 + T —4z; = 0.

Or it may happen that certain values are prescribed, because the corresponding point
lies on the boundary. For instance, we may encounter an equation of the form

Tp + Tq+ Tr — 4T = b,

where b, is the given value for the potential at the boundary point Ps. In any case, we
group the unknown variables in the left-hand sides, while the known ones are gathered
in the right-hand sides. Thus we get a linear system (S) for the variables z;. We are
going to show that this linear system is compatible, and has a unique solution for each
data on the boundary.

If there are N interior points P;, the system contains N variables z; and also N
equations: To prove that (S) has maximal rank r = N, we consider the associated
homogeneous system (H.S), simply obtained by requiring zero values on the boundary.
In this case, it is enough to show that there is only one solution to the problem, namely
the trivial one z; = 0 for all indices 4 (corresponding to interior points P;). Here is the
crucial observation. For any solution set (z;), select a variable z; taking the maximal
value (in a finite list, there is always a maximum!). Since this value z; is the average
of the four values at neighboring points, the only possibility is that these four values

7Certain boundary values may be irrelevant: Here, they are denoted by a o instead of a e.
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are equal, and equal to the maximal value. Iterating this observation on neighboring
points, we eventually reach a boundary point, where the value is 0. Hence the maximal
value is itself 0. By symmetry, the minimal value is 0. Finally, we see that all z; = 0,
which proves the claim.?

4 Notes on a Teaching Approach

From my experience, the last example is much more difficult to grasp than the two
preceding ones. But even if it is not possible to convey its significance, it will serve a
purpose, namely to show that linear algebra is not a trivial matter. Linear equations in
a large number of variables are used in extremely sophisticated situations, like weather
forecasting, devising profiles for wings of supersonic planes, etc. This is not apparent
on 4 x 5 examples, and is only suggested by the last example.

The preceding examples lead to the systematic elimination theory based on row
operations. Each of them can easily fit in a one hour (or 45 min.) presentation,
possibly followed by a discussion. In parallel exercise sessions (is it necessary to repeat
that exercises constitute a must in the learning procedure?), one may try to lead the
students to the question of the invariance of the rank. As soon as the vocabulary of
independence, generation, and dimension is acquired, it is possible to give a positive
answer.

It is widely recognized now that a first part of linear algebra should be devoted to
linear systems, rank/dimension theory, linear maps and their kernels, eigenvectors (ge-
ometrical theory, incl. diagonalization). A second part should introduce inner product
spaces with metric relations, orthogonality (Pythagoras theorem), best approximation
(mean squares method). This is the “bilinear” part of linear algebra. Symmetric oper-
ators can be treated in this part (with their diagonalization). Finally, in a third part,
the determinant is presented as a generalized volume, or volume amplification factor.
Having some experience from bilinear algebra, the students may now grasp multilin-
earity. Applications abound with the characteristic polynomial. Spectral values for
orthogonal, antisymmetric (and more generally normal) operators can be discussed.

It is important to me that a student able to follow only a first section of the course,
can already apply it in his field. I hope that this type of introduction yields a valuable
primer in linear algebra, complementing the classical approach by vectors in the usual
2- and 3-dimensional spaces.

REFERENCES
-Anton H., Rorres C., Elementary Linear Algebra, Applications Version, John Wiley (1994),

-Robert A. M., Linear Algebra by Examples and Applications (in preparation),
-Strang G., Linear Algebra and its Applications, 3d ed. Harcourt Brace Jovanovitch (1986).

8The same reasoning shows more generally that any solution will take its values between the min-
imum and maximum on the boundary. Any solution attains both a maximum and a minimum at a
boundary point.
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ENHANCING MATHEMATICS TEACHER PROGRAMS AND
RESPONDING TO THE SHORTAGE OF MATHEMATICS TEACHERS

Eric MULLER
Department of Mathematics, Brock University
St. Catharines, ONTARIO, CANADA L2S 3Al
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ABSTRACT

Through the Department of Mathematics the author has spearheaded many innovative courses and programs
to improve the mathematics education of future teachers at all levels. This work has been recognized by a joint
appointment to the Brock Faculty of Education. As co-chair of the Mathematics Education Forum of the Fields
Institute for Research in the Mathematical Sciences, he has motivated strategies to address the shortage of
mathematics teachers in Ontario. This presentation will consider the following: Too many middle school
teachers in Ontario show a lack of understanding of and enthusiasm for mathematics. In 1990 the Mathematics
Department,! with the collaboration of other Science Departments and the Faculty of Education, instituted a
unique program for middle school teachers. To teach at the secondary level in Ontario an individual must present
two subjects, a first teachable (a minimum of six university courses) and a second teachable (minimum of three
university courses). Half of the teachers in Ontario teach mathematics with a second teachable qualification and
with mathematical experiences gained in Service Courses. The Department of Mathematics has reviewed its
programs and opened appropriate courses to students wanting mathematics as a second teachable. Teacher
education in Ontario is principally consecutive, namely, teacher candidates apply to a Faculty of Education after
a first degree. There are no mathematics requirements to qualify for elementary school teaching in Ontario. The
author has instituted a mathematics course for future elementary teachers who did not complete their high school
mathematics. This course is now required by the Brock Faculty of Education.

Ontario is facing a shortage of mathematics teachers. For three years, the Mathematics Education Forum of
the Fields Institute has been developing strategies to address this concern. It is hoped that the sharing of these
developments will help others to implement changes within their own educational systems.
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Introduction

In Canada education is a provincial responsibility and in Ontario teacher education follows a
consecutive model, where future teachers first complete a university degree and then apply to a
Faculty of Education. Therefore the normal pattern is a three or four year undergraduate degree
followed by one year in a Faculty of Education after which one is certified to teach in the Province of
Ontario. Admission into Faculties of Education is based on a number of criteria including marks
achieved in the undergraduate program, a portfolio, and undergraduate discipline requirements. For
most programs in these Faculties there are far more applicants than positions and students must
present an average of at least 75% in their undergraduate program. A portfolio outlines experiences
with children, in schools, in camps, in tutoring situations, etc., and this can account for as much as
40% of the admission mark. Undergraduate discipline requirements depend on the school level
certification. For the purpose of this presentation we shall summarize and simplify these requirements
into elementary, middle, and high school certification. There are no subject specific requirements for
elementary school certification and teachers are home-room teachers responsible for most disciplines.
A minimum of three courses' in one subject taken from a list of ‘teachable’ subjects is required at the
middle school level. These ‘teachable’ subjects include those that one would normally expect.
Teachers at this level also teach across most disciplines. At the high school level candidates must
present a minimum of six courses in one of a list of ‘teachable’ subjects and at least three courses
taken from another subject from that list.

The consecutive teacher education model carries with it a number of implications for university
mathematics departments and for groups interested in mathematics education. At the elementary level,
mathematics departments need to be pro-active and offer a specially designed mathematics course,
otherwise the present situation will continue where the great majority of elementary teachers enter
their teaching career with very little understanding of mathematics, and how to teach it as a living
discipline. Mathematics departments should be even more concerned ahout the mathematics
background of teachers at the middle school level. Unfortunately very little has been done. In middle
school students start to make the transition from arithmetic to algebra, in geometry they move from the
visual/observational to the descriptive/analytical/relational, and they start their experiences in
probability and data analysis. Middle school teachers need understanding of mathematics beyond an
ability to perform a set of algorithms. At first sight undergraduate mathematics programs for
secondary school teachers appear to be less problematic. But are they? Are mathematics teachers
taking appropriate mathematics courses for their future career? Are they getting a breadth of
experience in mathematics? What about future teachers who have a major in another discipline and
have a minor of three courses in mathematics? Now that Ontario is experiencing a shortage of
graduating teachers of mathematics, future teachers with mathematics as a minor will surely end up in
a mathematics classroom. Are these future teachers selecting courses that provide a breadth of
experience in mathematics and that present mathematics as a living discipline? Or is their
mathematics a compendium of techniques? Do they understand what mathematics is and what

I A course in this context is a full year course.
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mathematicians do? In this paper we present some of the initiatives that the Department of
Mathematics at Brock University has implemented to address these many concerns.

Ontario has always had a shortage of middle school teachers who have any undergraduate
background in mathematics. Recent data shows that Ontario is starting to experience a shortage of
mathematics teachers at the high school level. Over the next five to ten years, and at the present rates
of graduation, the number of new teachers is projected to meet only forty four percent of the demand
for new mathematics teachers. This has implications for the government, for faculties of education and
for departments of mathematics. The Mathematics Education Forum of the Fields Institute for
Research in the Mathematical Sciences has undertaken a number of initiatives to address this concern.

Initiatives at Brock University

Brock University is a publicly funded university with just over twelve thousand undergraduate
students. The Department of Mathematics plays a fundamental service role to many disciplines in the
university and has an Honours program which attracts between twenty and thirty first year students
each year. It also has joint programs with other disciplines and plays an active role in teacher
education. In all courses and programs, students and faculty make extensive use of technology. Maple
is used starting in the first year. In Statistics, Minitab and SAS are used. “Journey Through Calculus”
and Geometer’s Sketchpad provide learning tools in appropriate courses. The Honours Program is
called MICA — Mathematics Integrating Computers and Applications. Within this Program students
may select concentrations in Pure Mathematics, or Statistics, or Teacher Education, or others.

In the late eighties the author turned his attention to teacher education, especially to the education
of future middle school mathematics teachers. Middle school mathematics plays a pivotal role in the
the development of individual’s understanding and progress in mathematics. Students start their
transition from arithmetic to algebra, in geometry they move from the visual/observational to the
descriptive/analytical/relational, and they begin experiences in probability and data analysis. To
enhance the education of future middle school teachers in mathematics a Concurrent Program was
developed on collaboration with members of the Faculty of Education and other members of the
Faculty of Mathematics and Science.

In 1990 thirty students were admitted to this special program where they would do mathematics,
science, and education concurrently. From the point of view of attracting students the timing was
perfect. Mathematics and science graduates were finding it difficult to get places in Faculties of
Education, because these Faculties had reduced the weighting on undergraduate program marks and
had increased the weighting on the portfolio — evidence that applicants have worked with children or
peers. In the Ontario context a Concurrent Program is attractive to students who aim to become
teachers because the program guarantees them a place in Brock’s Faculty of Education provided they
continue to meet certain conditions involving marks, course selection, and so on. As expected the
Concurrent Program continues to attract very good applicants, students who are interested and
motivated in mathematics and science, and students who have a real desire to become teachers.
Admission is done on the basis of marks and a letter that outlines the applicant’s interest in teaching as
demonstrated by activities with children or peers. The Program is highly structured and is demanding
in its diversity of emphases. Students’ have access to a Program director and a Program coordinator.
The formation of peer groups is, for some students, the major reason for their success in the Program.
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Professors report that concurrent education students form a real identifiable community, not only
because they know each other and take most of their courses together, but also because they are proud
to be in the Program. Members of faculty enjoy the dynamics that these students generate in their
mathematics classes. They are eager to share their knowledge and are ready to ask questions. The
Program consists of six (full year) courses in mathematics, three in different sciences, a number in
education, one in child and youth studies, one in psychology, and one selected from the humanities. It
aims to provide a breadth of experience while it retains a concentration in mathematics. Students must
maintain a 75% average. In mathematics the students are exposed to different areas of mathematics,
that include calculus, linear algebra, discrete mathematics, combinatorics, probability, statistics,
geometry, applied abstract algebra, geometry, history of mathematics and teaching/learning
mathematics at the middle school level.

There are many enrichment possibilities. Students can instruct in the annual Brock University
residential mathematics and science camps organized for over 2000 middle school students in May
and June. They can instruct in an annual camp for Aboriginal students, and in a camp for top Ontario
grade 9 and 10 mathematics students. They can help in local and regional Science Fairs, and can
participate in a government-sponsored program called “Tutors in the Classroom”. Parents from the
region can draw for assistance from the list of mathematics tutors maintained by the Department.

Over eight hundred students have graduated from this Concurrent Program and school boards are
approaching the University specifically for these graduates. Because these students have completed
enough mathematics and science courses to qualify for high school teaching a small number upgrade
their teaching certificates. In general however most of them are teaching at the middle school level
and are rapidly taking leadership roles with other teachers in their schools.

I believe that this Program is an example where a small but consistently implemented change can
produce quite an effect in the educational system as a whole. I have tended to shy away from
innovations that will not be sustained by the Department of Mathematics. When I started introducing
technology in the mathematics courses in the mid-eighties most of my time was spent getting other
faculty on board. There are too many examples of innovative courses and programs in departments of
mathematics that have collapsed when the sustaining faculty member has moved out of them.

The Concurrent Program for future mathematics teachers at the middle school level suggested that
the Department should play a more important role in the preparation of future mathematics teachers at
the high school level. The Department extensively advertised the shortage of mathematics teachers and
developed appropriate packages of mathematics courses for them. Finding an appropriate set of
courses for majors was not difficult. What was a challenge was the selection of appropriate courses
for those students who would be majoring in another discipline and would be seeking to complete
three mathematics courses. The looming shortage of mathematics teachers would make it certain that
these graduates would be placed in a mathematics classroom. While doing this, the Department of
Mathematics also identified three appropriate courses for future middle school teachers, not in the
Concurrent Program, who would be selecting mathematics as their ‘teachable’ subject. Whereas for
high school teacher preparation it would make sense to require calculus and linear algebra, for the
middle school level it would not be appropriate to allocate one and a half courses out of three to these
two areas. The prerequisite structure of upper year mathematics courses made this a real challenge.
Students without Calculus and Linear Algebra would not have access to courses in the history of
mathematics nor to courses in geometry, two essential areas of mathematics for future teachers at the
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middle school level.

Three years ago the Department of Mathematics decided to completely review and restructure its
curriculum. Although technology was the main, opening up courses to more students was another
reason. The review had three objectives. It analyzed the impact that the availability of technology in
every course had on curriculum and 'sequencing of mathematical concepts. It seriously explored what
it meant to teach mathematics in this new environment, and it made every effort to open up the
prerequisite structure of courses. The impact for future teachers was the splitting of both the geometry
and the history of mathematics course with their first half not requiring calculus and linear algebra.
The history of mathematics course at Brock is particularly useful for future teachers as it is sequenced
historically and students do mathematics within the mathematical constraints of the time. Although
one can always improve the content and approach in courses if they were only for future teachers, the
Department of Mathematics believes that it has done the best it can with the resources it has.

The focus on future teachers at the elementary level is very much the author’s interest and is
informed by his cross appointment to the Faculty of Education. For the past two years I have been
teaching a mathematics course for students who have not completed their high school mathematics but
are hoping to teach at the elementary level. The prerequisite for this course is failure or an incomplete
program in mathematics at the high school level. The course runs as a set of workshops using hands on
materials and using Mason (1) type problems that the class works on until everyone is able to explain
to a peer how they have completed the activity and understood the mathematics. The students are
encouraged and coaxed to ask questions, to make hypotheses and not to get emotionally attached to
them, to look for generalizations, to explore the nature of mathematics, to do simple mathematics in
different ways, to consider how mathematics at the elementary level empowers students to do
mathematics at higher levels, and to do explorations in a non-threatening environment. I get a lot of
satisfaction from the noticeable progress of the majority of these students. By the end of the course
most of them are able to work on substantial mathematical problems and they are capable to translate
their understanding of mathematics as a human endeavour to the mathematics they will be teaching.

Initiatives by the Fields Mathematics Education Forum

The Fields Institute for Research in the Mathematical Sciences has mathematics education as one
of its mandates. It achieves this responsibility through a Mathematics Education Forum that brings
together individuals from universities (both from departments of mathematics and from faculties of
education), from colleges, schools, industry and from business. The Forum is Chaired by the author
and it has developed and completed a number of mathematics education initiatives both at the
Provincial and National levels. One of the initiatives was to address, through the work of a Task Force,
the looming shortage of mathematics teachers in Ontario. Because the Forum has a wide
representation, it has a certain standing among communities that can impact the problem. The Task
Force identified a number of aims. The first was to make Faculties of Education aware of the problem
so that they may increase the intake of students who present a concentration of mathematics courses in
their undergraduate degree. The second aim was to encourage departments of mathematics to reflect
on their responsibilities for the education of future teachers. The Ontario consecutive model of teacher
education will be most effective when departments of mathematics, within their programs, provide
opportunities for future teachers to reflect on their learning of mathematics and when they offer

261



O

ERIC

Aruitoxt provided by Eic:

environments that model good teaching practice. Future teachers benefit from a diversity of
mathematical experiences that arise in courses from a variety of mathematical areas. They also benefit
from the experience of different assessment practices. If these undergraduates have opportunities to
tutor, to work in groups, and to assist teachers in schools, they will develop a better understanding of
what teaching is all about. The third aim of the Task Force was to develop an advertising campaign
directed at students in schools, colleges and universities. For this a Website (2) was developed and a
poster advertising this site was sent to every Ontario high school, college and university.

Conclusions

The consecutive model of teacher education in Ontario provides opportunities for university
departments of mathematics to influence and improve the mathematics preparation of future teachers.
However to do so departments have to be proactive and have to consider what mathematics courses
are most appropriate for future teachers at different school levels. Unfortunately few university
departments of mathematics have been proactive and the number of applications to faculties of
education by students who have mathematics in their undergraduate degree is insufficient to meet the
demand for teachers of mathematics. The Department of Mathematics at Brock University has
developed some innovative courses and programs for future teachers. The Mathematics Education
Forum of the Fields Institute for Research in the Mathematical Sciences has and continues to address
these concerns.
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POLYNOMIALS IN THE CONTEXT OF LINEAR ALGEBRA:
EXPRESSIONS? SEQUENCES? FUNCTIONS? VECTORS?
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ABSTRACT
Problem: Textbooks offer different definitions for polynomials. Examples:
e Expressions over aring;
¢ Infinite sequences;
¢ Functions from the ring of coefficients into itself.

Mathematical and epistemological implications of the different interpretations will be discussed.
Methodology: In a one semester Linear Algebra course polynomials were defined as functions but the
coefficient-criterion for equivalence was assumed. Vectors were defined as elements of a Vector Space
(systemic definition). After the course the students were interviewed about polynomials and their role as
vectors.

Findings:

e Two of the above interpretations of polynomials were present in the students’ responses: Expressions and
functions.

e Students evoked images that were never introduced in class, such as a curve for a polynomial, and a
floating oriented segment for a vector.

e Students experienced difficulties in consolidating their contradicting prototypes of vectors and
polynomials.

e The coefficient-criterion for polynomial-equality was rarely applied.

e  Only one student used the systemic definition of a vector.
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What is a polynomial? Textbooks often offer the following definitions:

Polynomials as expressions over a ring: In this interpretations polynomials are defined as
expressions of the form a, x" +a,_,x"" +..+a,x +a, where X is a symbol which has no
particular meaning and a; are elements of the ring (Dubinsky & al., 1994). As such, two

polynomials are considered equal if equal powers have equal coefficients.
Polynomials as infinite sequences with elements in a ring, of which all but a finite number
equal zero. While in the previous definition X' had no particular meaning, here it is defined as
i
x' ={o,0, 1,0 ]
i

Together with the following definitions: a={0,0,...}
f+g := { aotBo, w+Ph,... }
and f‘g = { Z;+j=0aiﬁj, Z;+j=1aiﬁj, }

We then have that = { o, 1, ... &, 0,0,...} can be expressed
uniquely in the form f= 0+ 0uX + 0x* + ... + OX" .

Here again two polynomials are defined to be equal if and only if &, =,, &, =B,, &, =B, ...
(Curtis, 1974). We call this definition of equality via the coefficients “the coefficient criterion for
equality”.

Polynomials as functions p(x) from the ring or field of their coefficients into itself.
Consider the following definition:

Let f= Zaixi , where all but a finite number of ®; equal zero. In order that

fe F[x], we define f(E) as follows: Let &€ F. We define an element f(E_,)e F
by f(§)= 2 o,E", and call f(é) the value of the polynomial f when & is
substituted for x.

(Compare, for example to Curtis, 1974, p. 168.)

The equality of polynomial functions is taken to be that of functions:
f=gif and only if f(&) =g(&) forall £€ F.

A theorem follows:
Two polynomial functions f(x) and g(x) are equal if and only if o= f; forall i.
Proof:
o;=f; foralli = f=g isobvious.
Not so obvious, although seldom treated with students, is the other direction:
f=g = o;=f foralli.
It is easily proven in C[x] and F[x], relying on the differentiability of polynomial functions over
C and F: For any i, differentiate the equal polynomials i times, substitute in the ith derivative O for
X, and you get ;= (3,

What about other fields? In fact, the Coefficient Criterion for Equality does not hold for
Polynomial Functions over any Zp with P prime. In Zp[x], x"and x, polynomials of different
coefficients, are equal functions. This follows from Fermat's Little Theorem:

Let p be a prime which does not divide the integer a, then a(p-1) = I (mod p).

Sometimes Fermat's Little Theorem is presented in the following form:
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Corollary:
Let p be a prime and a any integer, then & = a (mod p).

Research literature

Rauff (1994) deals with students’ difficulties when operating on polynomials as expressions,
without referring to them as functions. Harel (2000) claims that difficulties with vector spaces of
functions in general (and of polynomials in particular) arise from the fact that the students have not
formed the concept of a function as a mathematical object. To use his words: “as entities which
they can treat as inputs for other operations” (there, p. 181). Using APOS terminology (Asiala &
al., 1996) one might describe the need for the concept of function to have developed from action
via process into object, in order for the student to be able to treat polynomials as members of a
vector-space, and hence as vectors (The systemic definition of vectors, Syrpinska, 2000).

Dorier & al.(2000) treated vector spaces of polynomial functions and examined students’
operating with specific values of the functions and their derivatives. So did Rogalsky (2000).

I did not find research on the flexibility required of students for shifting from one definition
(interpretation) of the concept to the other, or the intuition students might or might not have
regarding the coefficient criterion for equality.

Methodology of the reported research. Fifteen students took a one-semester course in linear
algebra at a college for prospective high-school teachers of technological subjects. This was a first
semester in the first year of their college training with no preparatory course in mathematics.

Teaching of this course tried to follow principles derived from the theoretical perspective
APOS (Asiala et. Al 1996). Those teaching according to this perspective often use the ISETL
software in undergraduate mathematics courses, but due to technical problems ISETL was used
only partially in this course — only at its opening phase. Some ISETL activities were dedicated to
the amelioration of the concept function in the minds of the students, bringing it closer to the level
of object. It is accepted by APOS-oriented researchers that a significant development of the
concept of function is a pre-requisite to the student’s ability to construct adequate linear algebra
concepts. For example: The construction of linear-combinations as functions with input scalars
and vectors and output a single (new) vector (). Similarly, the ability to treat polynomial
functions as objects, to operate upon them the vector-space operations, and consider them
members of a vector-space, also depends upon the student’s previous development of a polynomial
function as object.

A general characteristic of ISETL is that some of the more effective activities it enables can
only be carried out on finite sets. Hence using ISETL in a linear algebra course naturally deals
with finite fields Zp and vector-spaces over them. Hence a distinction between the different
interpretations of polynomials arises in such a course.

Polynomials and vectors in the course )

e The term Vector was first introduced with tuples, then broadened to other examples, and finally
to the general (systemic) definition: A vector is an element of a vector space (See Fischbein,
1995, Sierpinska, 2000, on systemic thinking).

e Polynomials were defined as functions, and dealt with over R only.

e Vector spaces of polynomials over R were dealt with throughout the course;

o The coefficient-criterion for equivalence was presented and taken for granted (no proof).

'Y RUMEC - Research in Undergraduate Mathematics Education Community (2001). Initial genetic
decompositions for topics in linear algebra. Unpublished report.
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The interviews

Of the 15 students, 12 agreed to be interviewed after the course. The interviews consisted of a
structured questionnaire, were conducted individually, with each interview lasting about 45
minutes, and were video-recorded. Question no. 8 was constructed to examine the concept of
polynomial:

uestion no. 8:

One. What is this:  x* +x>+7.

Students who did not identify this expression as a polynomial were reminded of this term. If
the question “what is a polynomial” was not brought up spontaneously, then the interviewer
asked it.

Two. How does one check whether a x"+a,_x""+..+a,x+a, and
b,x"+b,_x"" +..+b,x+b, are equal? (In some cases, when the student could not relate
to the general expression of polynomials, the question was repeated with explicit examples,
suchas 4x*+3x+1 and 4x°-2x+1).

Threels x*+x’+7 a vector?

Four. What is a vector?

Responses to this question were organized according to the following aspects:
e  What is a polynomial?
e  Equality of polynomials.
e  What is a vector?
e The confrontation of contradicting interpretations of vector and polynomial.

I will start with a lengthy analysis of a single student’s interview.

Harve - What is a polynomial?
Int.. What is this? {Points at the written polynomial].
Har.: A polynomial.
Int.. What is a polynomial?

Har.: A polynomial is a... an equation. Wait, actually it is not an equation, a polynomial
is un... addition of..., with un,...and, well,... I'want 10 say, no, at the beginning 1
wanted to say equation, but I don’t have any equality-sign here, so I dropped it.

Int.: Well.

Har.: Eh, it’s an expression, with, eh, of the deg, of the deg, of some particular degree.
From degree two up it can be a polynomial.

Harve — Equality of polynomials — A.

Int.: O.K, just give me a minute [writes: 4x’ +3x +1 4x3=2x+1 ). Here are two
polynomials.
Harv.: Ehem.

Int.. Arethey equal?

Harv.: [Thinks.]

Int.:  Equal or unequal?

Harv.: Maybe they are equal, when x equals zero. Only then they will be equal. Yes, then
I..., Actually no, I don’t understand...Ah, the x, yes, the x must be zero, for them to
be equal. Any other digit...

Harve — Equality of polynomials — B.
Int.: But the polynomial, the polynomial itself.
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Harv.: Polynomial to polynomial?

Int.: Yes.

Harv.: What does it mean, polynomial to polynomial? And what, you need...

Int.: What do you need to do in order to check, whether they are equal. That is the

question.
Harv.: This means to start what, to reduce between them, to make equal [writes an
equality sign = between the two polynomials: 4x° +3x+1 = 4x° =2x+1 1.

To find the x or something like that? No? ...To find what is the x itself, which
maybe they will be equal.

Harve’s relation to the polynomials brings into mind the Action conception of function,
described within the APOS theoretic perspective:
An action is a repeatable mental or physical manipulation of objects. Such
a conception of function would involve, for example, the ability to plug
numbers into an algebraic expression and calculate. (Dubinsky and Harel,
1992)

Within this perspective we also have a detailed description of the limitations of the action
conception of function. Applied to polynomials, we can anticipate that a student whose
conception of polynomial is limited to action conception of function, would probably be able to
calculate (component per component) a linear combination of two polynomials, but will not be
able to discuss and investigate characteristics of operations such as polynomial addition or
multiplication by scalar. Hence he or she will find it difficult to consider whether a given set of
polynomials is or is not a vector space.

Now we can sum up what we know about Harve’s conception of a polynomial:

e A polynomial is not an Equation;

e Itisan Expression;

e His function concept is at the Action level of development — far from the required level
of object. This is especially evident when he asks: What does it mean, polynomial to
polynomial? As if for him, polynomials are not comparable objects.

e  Equality: Point-wise Equality, and for but some substitutions.

Let us look at Harve’s responses in relation to the other aspects.

Harve —Is a polynomial a vector?
Int.: Is the expression that we had here, [reads and points at x*+x*+7], isita

vector?
Harv.: [Thinks]...A vector needs to have a size and a direction. [Thinks] And here...
[sighs], I can’t even turn it into a vector, what should I do, x to the power of 4 and x

4
X

. 3 , ,
to the power of 3 [writes: ] and senp X ot, it does not seem right.
7

Harve — What is a vector?

Int.: O.K. So for you a vector is,... So what is a vector?
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Harv.: A vector is a number that has both a size, its size, and the direction. That means, to
which direction does it move...

So for Harve, a vector is either a mathematical thing that has size and direction, or else, maybe

a tuple.

Having analyzed meticulously the responses of one particular student, I will present other
students’ responses accumulated according to the suggested categories.

What is a polynomial.

The students related to three different interpretations of polynomials:
¢ Polynomials as equations

¢ Polynomials as meaningless expressions.

¢ Polynomials as functions.

Polynomials as equations.
Some students thought that polynomials were equations. Here are some such answers to the

question What is this [ x*+x*+71?

Kid:  An equation.
Guil: Does it not have to be equal to zero?
Jul: This is an equation.

Others, after considering this interpretation, rejected it. They concluded that x+x*+7
- was not and equation:

Harve: A polynomial is a... an equation. Wait, actually it is not an equation

And then:
...at the beginning | wanted to say equation, but | don’t have any equality-
sign here, so [ dropped it.

Ala: It is not an equation, as if, it is not equal to anything
Mad: It is not an equation.

Polynomials as meaningless expressions:

Hersch: A polynomial is..., a set of elements

Ala: ...It is some exercise.
And then:
Are these powers? 3 and 4 [Points at them]?
Int.: Yes, it is [reads] P axP+7.
Ala.: Then it is an exercise

Michel: x to the power of 4 and ...a number, two variables and a number.

Exercise was considered in this category as I think that by this term students referred to some
combination of mathematical symbols to be manipulated according to some syntactic rules.

Polynomials as functions

I'st. Function as an input-output mechanism (action level in the development of the concept):

Harv. About 4x°+3x+1 and - 4x°=2x+1:
Ah, the x, yes, the x must be zero, for them to be equal. Any other digit...

Mad said About x*+x*+7 :
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If you substitute any number, it gives a result. ... Let’s say 7, gives us 7. Zero,
seven. ... ...one Is nine.

2nd. Function as a graph

Joel: When I have, when I have a polynomial [says and writes:] x> +x+ it looks like this
[draws:]

Joel was the only student to present a graphic interpretation of function.

The coefficient criterion for equality of polynomials
A. Knowledge

Lin is one example of a student who can be considered to actually know this criterion:

Int.: Here are written letters, but suppose you had numbers, how would you check?

Lin: [ should have, I would, would compare, ah, greatest power to greatest power.

Int.: Even if the greatest power here was 5 and the greatest power here was 3, you would...

Lin: No, no, no, the meaning is if the power here 5, as 1 said, and here 5, then I...

Int.: So what would you compare?

Lin: The..., if the powers were equal then I'd compare the numbers.

Int.: They are called coefficients.

Lin: Coefficients. And they are equal then they are equal, If they are not equal...

Int.: Wair, wait, if they are equal with the high powers then you can stop checking?

Lin.: No. no. 1am speaking about, for example here it was 5 and 5 [points at both given
polynomials, in letters). 1’d look, 5, 5. And I'd look and see that the numbers are
equal, that the coefficients are identical, then I'd move to the lower power, to 4 or
3, depends what, what was there.

Why do I categorize this response under knowledge? Here 1 am using a description of
knowledge used often by researchers who work within the theoretic perspective APOS:

A person's mathematical knowledge is her or his tendency to respond to certain
kinds of perceived problem situations by constructing, reconstructing and
organizing mental processes and objects to use with the situation. (Dubinsky, E.,
1989).

We might say that Lin did reconstruct and describe an action-scheme which uses the
coefficient criterion for the check of the equality of two polynomials.

5 (out of 12) students explained a proper version of the coefficient criterion, and could be
categorized as knowers.

The coefficient criterion for equality of polynomials
B. An enlarged criterion

Mad was another student who expressed knowledge (proper use) of the Coefficient
Criterion, but he went further to enlarge this criterion into an invention of a kind of “order
relation” between polynomials:
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Int.: Suppose these are two polynomials and we wrote here letters instead of the
coefficients. Yes? If theses were numbers, how would you check if these two
polynomials were equal?

Mad: You subtract this from that, if it equals zero, they are equal.

Int.: How subtract?

Mad: Here is degree 4, and here 4 [points at the appropriate components] you take the
coefficient of this minus the coefficient of that, the coefficients, if it is negative
then this is smaller than that. If it is zero than they are equal, if it is positive
then this is larger.

What is a vector?

In order to analyse the student’s ideas about polynomials and vectors, I will first present
their ideas of what a vector was. First some concept images (Vinner, 1983)

Ist. Size and direction
Harve: A vector needs to have a size and direction.

Hersch: O.K., we said that the definition of vector is not something that has direction and
size, which is what it usually is, so if not, every number, every mathematical
operation, any part is a vector,... I don't have a definition.

That is an example of a student’s awareness to the conflict between his concept image and
concept definition (Vinner, 1983).

B. Comes out of zero

Mad: Something that comes out of zero and goes up to some point.
Tania: It is an axis, that comes out of the origin.

C. Joins two points

Joel: A vector..., it joins two points. ... And it has a direction.
D. A tuple?

Harv. [about X* +x* +7, after saying that A vector needs to have a size and a
direction.] And here... [sighs], I can’t even turn it into a vector, what should I
do, x to the power of 4 and x to the power of 3 [writes]:

x4

and seven. It's not, it does not seem right.

E. A element of a vector-space

Lin
Int.: Is this polynomial [points at x* +x*+7)...a vector?
Lin.: Is this polynomial a vector? [Thinks.]
Int.. How do you know if something is a vector?
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Lin.: If, eh, a vector is actually a sub, it needs to be a vector-space. If it fulfills all
the rules of a vector-space, and if it is a vector-space, which I do not...

Int.: Ah, do you hesitate because you do not remember whether it is a vector-space?

Lin.: No, no, 1, yes, I do not remember if it is a vector-space.

Int.: O.K.

Lin.: Ifitdoes...

Int.: If it were a vector-space?

Lin.: Then yes, it is a vector.

This is an example of the systemic thinking, discussed by Sierpinska (2000) and Fischbein et
al. (1995). It means that a student is able to analyze a mathematical concept from the point of
view of a system comprised of elements of its own kind, and their transformations. For Piaget,
such ability indicates the organization of the concept vector into an operation (Piaget, 1975,
1976, Piaget and Inhelder, 1971). In terms of APOS it also means that the concept polynomial
has developed, in the student’s mind, into an object.

Confrontations between concepts
The last of response categories I present deals with confrontations between the student’s
concept of polynomial and his concept of vecror. Two examples:

Mad

Int.: This, the polynomial we have started with [points at x*+x’+7] Isita
vector?

Mad: If you substitute any number, it gives a result.

Int.: And that’s why it is a vector?

Mad: Let’s say 7, gives us 7. Zero, seven.

Int.: Ehem.

Mad: One is nine.

Int.: And that’s why it is a vector?

Mad: Yes.

Int.: What is a vector?

Mad: It’s, let’s say, something that comes out of zero and goes up to some point.

Int.: And this [points at the polynomial] comes out of zero and goes up to some
point?

Mad: Not in every case, only in the substitution of zero.

Int.: Ehem.

Mad: If you substitute zero gives us zero seven.

Int.: Ehem.

Mad: And this is not a vector.

So we can see that for Mad, a vector is something that comes out of 0, while for
polynomial he has an action concept of function (substitution). In the confrontation between
the two he first thinks that Yes, it is a vector, because of (0,7), but finally he concludes that
this is not a vector, perhaps because Not in every case, only in the substitution of zero.

Joel contributes our second example of confrontation. His is a confrontation between
two graphical concept images, that of a polynomial as a graph of the function, and that of a
vector as an arrow that joins two points. We have quoted him before in relation to each of
these concepts separately. Here is his full discussion of x* +x*+7 both as vector and
polynomial:
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Int.: Is this polynomial [points at x* +x* +7] a vector?
Joel.: Isitavector? Ah, yes, it is a vector, yes.

Int.: What is called “vector™?

Joel.: A vector..., it joins two points.

Int.: A polynomial joins two points? [Points at the polynomial.]

Joel.: Ah?

Int.: Does a polynomial join two points?

Joel.: When I have, when I have a polynomial [says and writes:] X2 +X+ it looks
like this [draws:]

Int.: Ehem
Joel.: But this is not a vector [adds a cord with an arrow:]

But the vector is between two points.
Int.: So wait, wait, the arrow is a vector because it joins two points.
Joel.: And it has a direction.
Int.: O.K. So why is the polynomial a vector?
Joel.: [Thinks] Why is the polynomial a vector? Good question. I need to think of it.

Conclusions

In a subject matter as difficult as linear algebra, even the “simplest” objects, polynomials,
which are supposed to serve as “familiar”” examples of the more abstract ideas, turn out to be
interpreted in many different ways, both in the mathematics and in the students’ minds. The
consolidation of these interpretations poses problems for both teacher and student. How could
research help us here?
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ABSTRACT

In an attempt to promote the development of understanding over rote memorization, writing in mathematics
has received increased attention in recent years. In Calculus, the Rule of Three (based on communicating ideas
through algebraic, graphical and numerical means) has been replaced by the Rule of Four in which writing
plays a central role. Educators agree that the benefits of writing include the promotion of understanding, and the
initiation of the posing of questions. Writing also helps generate meaning, and helps in the retentio n of content.
In this paper, 1 evaluate the use of writing for analyzing a problem and its solution, The setting is a reformed
differential equations class offered at the Lebanese American University. Unlike a traditional ode course where
students are provided with a cookbook of methods for solving differential equations, the emphasis in a reformed
ode course is placed on the geometry of the solutions and on an analysis of the outcomes. In many instances,
students are asked to solve a differential equation by plotting its solution curves without identifying them
analytically, and the sketch is to be supplemented by an argument justifying it. In addition, various real life
problems are modeled and essay questions are asked to.analyze the graphs describing these models. Results
show that students first reject the idea, but later rate writing as essential. Furthermore, an improvement in the
style and content of the writing exercises is usually noticeable at the end of each semester.

Keywords; Reformed differential equations curriculum; writing in mathematics.

274



1. Introduction

In recent years, the curriculum of ordinary differential equations has undergone fundamental
changes in favor of the visual aspect of the field. Traditionally, differential equations were taught in a
very mechanical way: Equations are usually classified, and for each class a method of solution is
presented. Since differential equations are widely used in engineering and the physical sciences, this
mechanical approach has defeated the purpose of the course as an aid to understanding real life
problems (such as the harmonic oscillator, predator-prey models, competing species models, and
others.) The traditional approach to teaching differential equations has its roots in the way Calculus
has been taught throughout the past centuries. Even though the ideas of Calculus were inspired by
problems in astronomy, and even though Calculus later showed to be very useful for answering
questions in various sciences, this mathematical field has been taught traditionally as a set of rules and
procedures with very little reference to its uses in the real world. More than a decade ago, educators
and researchers begun questioning this approach for teaching Calculus, and many discovered that
teachers and students alike are “losing sight of both the mathematics and of its practical value”
(Hughes-Hallett, Gleason, 1998, p. v). Following the first program announcement for Calculus reform
of the National Science Foundation in the United States, mainy math instructors begun re-designing
their classes, and many of them emphasize now the algebraic, the visual, and the numerical aspects of
the field (the Rule of Three). Clearly, the development of advanced graphing calculators and of
dynamical computer programs was a contributing factor to the adoption of this approach. More
recently, writing was added to the Rule of Three. According to Hallett, Gleason, et al., students need
to learn ““to reason with the intuitive ideas and explain the reasoning clearly in plain English” (p. vi).
In general, researchers agree that the benefits of writing include the promotion of understanding, and
the initiation of the posing of questions; writing also helps generate meaning, and helps in the
retention of content (Rose, 1989, 1990).

Differential equations are a beautiful application of the ideas and techniques of calculus to solve
various real life problems. Consequently, the new approach for teaching calculus lead to a similar
approach for teaching differential equations. In the article “Teaching Differential Equations with a
Dynamical Systems Viewpoint”, P. Blanchard (1994, p. 385) suggests that teachers do not give any
more equations for which explicit solutions exist, but rather use computers and graphing calculators to
graph the approximate solutions of a differential equation and require students to interpret and justify
what they see. In the book Differential Equations by Blanchard, Devaney and Hall (1998), the authors
write (p. v), “ the traditional emphasis on specialized tricks and techniques for solving differential
equations is no longer appropriate given the technology that is readily available.... Many of the most
important differential equations are nonlinear, and numerical and qualitative techniques are more
effective than analytic techniques in this setting.” Addressing the students, the authors add that many
exercises of the book ask to analyze models and to explain verbally the conclusions. Thus, in the new
ode curriculum, writing is as essential as the solution process itself.

Research on writing in mathematics is not very extensive yet. In the literature, some papers and
books have emphasized the skills required to write a good mathematical proof. (e.g. MAA Notes 14
(1989)); others, such as J. Meier & T. Rishel (1998), M. Porter & O. Joanna (1995), A. Schurle
(1991), have discussed the effects of writing on the learning itself. In particular, Schurle discusses
whether writing helps students learn about differential equations. However, the curriculum adopted by
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the author is the traditional one. In this paper, I will assess primarily writing as a tool for analyzing
and understanding results obtained mostly geometrically in a reformed ode course. Writing to
understand concepts is in addition evaluated.

2. The New ODE Curriculum

An ordinary differential equation of order  is an equation of the form:

dy _ dy d*y d"'y

a T
Finding a solution to this equation means finding a function y() satisfying that equation. Analytically,
this requires expressing y(z) implicidly or explicitly in terms of ¢. In a traditional differential equations
course, analytical methods of solution are described for very specific types of equations. In a reformed
course however, more emphasis is placed on the geometry of the solutions. In many instances,
solutions are drawn without a slight knowledge of their analytic representations, and students are
expected to read information from these graphs. For instance, in studying the logistic population

model % =kP(1- %) (a first order differential equation), students are expected to read from the slope
t

field the growth of the population given any initial condition (See Figure 1). In studying harmonic

2
k
Ly bdy k
!

oscillators, second-order equations y=0 are transforme d into systems of the form

mdt m
dy_,
Zt X , and students are expected to read from its vector field the change in the position
v

— ey ——p

a m m
as well as in the velocity of the motion of a mass attached to a spring (see Figure 2). Clearly, this
qualitative approach for solving differential equations gives a new dimension to the field of
differential equations since in the traditional setting, rarely were students asked to interpret solutions
that were obtained analytically.

3. The Setting

The course, Ordinary Differential Equations, as is offered at the Lebanese American University in
Beirut, is a 3credit course aimed at engineering students who have taken prior to it the calculus
sequence. Before enrolling in a school of engineering at any university, students of Lebanon have to
pass the official baccalaureate exam (mathematics section) offered at the end of their secondary school
years. Teaching in Lebanon is still traditional. Only in few private schools are graphing calculators
and computers in use. Yet, the teaching of 3% and 4" semester calculus at the Lebanese American
University incorporates the use of Mathematica in the form of projects combining the geometric and
the analytic sides of mathematics. The class meets three times a week (50-minute sessions) in a regular
classroom. The book adopted for the past three years has been Differential Equations by P. Blanchard,
R. Devaney & G. Hall, a reformed text that emphasizes the geometric approach and analyses of
outcomes. Furthermore, two computer software programs are used regularly: ODE Architect, a
multimedia tool with enormous visual capabilities and generally used for classroom presentations; and



Interactive Differential Equations (IDE), a collection of labs designed to build a complete
understanding of a particular concept. Computer homework are usually assigned from IDE and they
generally require a great deal of visual observations that can only be communicated though writing.

4. Sample Writing Exercises and the Students’ Reactions

As mentioned above, the book of Blanchard, Devaney and Hall emphasizes the geometrical
approach to differential equations and requires analyses of outcomes. The authors for instance
introduce the idea of a differential equation by modeling a population growth problem. According to
them, how the differential equation is written is not of much importance; the importance lies in “what
the equation tells us about the situation being modeled” (p5). Throughout the section, various models
are solved geometrically and discussed primarily in a verbal manner. Exercises fall also in the same
line of thought. For instance, in one exercise (p. 15), learning is modeled by the differential equation

%: 2(1- L), where 0< L(r) <1 is the fraction of a list learned at time . One question asks students
t

to analyze whether a person who starts up knowing none of the list can ever catch up with another who
starts up knowing half of the list. Similarly, many problems that I give on exams always require some
verbal discussions. Some questions for instance ask to analyze results obtained geometricaily such as:
Given a slope field of a first order differential equation, draw a representative collection of solutions
and describe verbally the main similarities and differences of solutions to various initial value
problems; or: Associate differential equations with slope fields and justify the answer with a short
paragraph; or: Identify systems as being Predator-Prey or Competing Species systems, and write a
small paragraph justifying the identification; in particular discuss what happens when one of the
species is extinct.

Other exam questions require writing essays to examine the level of theoretical understanding. For
instance, one might ask students to discuss the existence and uniqueness of solutions to initial value
problems. Another question that I add frequently to my tests is about the general linear system:

dx

—=uax+b
dr Y

£1—)i=cx+dy.
t

Students are asked to discuss in an essay the condition(s) that a, b, ¢, and d have to satisfy in order to
obtain for instance two distinct real eigenvalues. Then they are asked to discuss the different kinds of
phase portraits that can occur in this case

Assignments from the workbook Interactive Differential Equations also encourage students to
explore mathematical concepts through writing. In one favorite exercise, the love affair between
Romeo and Juliet is modeled by a linear system of differential equations (see system above). The
values of a, b, c, and d are changed to reflect new factors affecting the relationship. Questions posed
require in most cases an analysis of feelings. Here is a sample: What are Juliet’s feelings for Romeo
when he is most attracted to her? What do you expect to happen to the relationship? Suppose the two
lovers had exactly the same emotional profile in terms of their response to each other and their
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responses to their feelings (?: ax+ by,ﬂ =bx + ay ), investigate some situations and write a small
t t

paragraph. _

Do students accept the idea of writing essays in mathematics? And how do they react to questions
of this sort?

In the beginning, most students reject somehow the idea of writing in mathematics. As one student
puts it: This is a Math, not an English class! Students have been trained in schools to solve any
mathematical problem in a mechanical way; a discussion of the problem and a justification of its
outcome have rarely been considered important. Consequently, the idea of writing in mathematics is
alien to them. In fact, students of a reformed ode class have to adapt first to the idea of solving a
mathematical problem geometrically rather than analytically. In Habre (2000), I investigated strategies
for solving a differential equation as adopted by students of a reformed ode course offered in the
United States. Results showed for instance that most students think primarily of analytic solution
techniques; only few showed approval of the qualitative approach, while all the others had serious
reservations about it. Since writing is a consequence of the geometric approach, it is not surprising
therefore that most students initially reject this idea. For instance in the exercise modeling learning,
only 36% of the students investigated discussed it verbally. It was unfortunate that by the time it was
due, the analytic technique for solving a separable differential equation had been discussed in class.
Consequently, 43% of the students tried to solve the problem analytically. The remaining students
combined both approaches perhaps in an attempt to justify analytically what they had discussed
verbally. By the time the first exam is usually given, students are in general more adapted to the idea
of writing, yet their problem lies in not knowing how much writing is required. In many cases, their
verbal discussions become lengthier as time goes on. As for the content, many discussions include the
right amount of information needed and some may be even lengthy; but there are always students who
do not write enough and students who cannot accept the idea of writing in Mathematics. Figures 3, 4,

& 10x(- )-8y
t 5

and 5 show a sample of students’ answers to the Predator -Prey essay question:

ly 1
— =y
a7

In Figure 3, the analysis of the student is almost complete with a detailed description of the behavior
of the predator and prey population. This student writes: “ [This] is a predator —prey system. When

x> 0,%,\:}: > Othis has a positive effect on -z—ywhich makes the predator y grows because they are
t

eating preys. When y >0, -8xy <0 this has a negative effect on ?which make the prey x decay
t

because they are eaten by the predators. When x = 0, preys are extinct; % = —4y [then] the predators
t

will decay because they don’t have food to eat (-4 y <0). When y = O, [then] predators are extinct,
(then], the preys will grow according to a logistic model since there are no predators to eat them.”
Figure 4 on the other hand is the work of a student who seems to have understood the system but did
not write enough. The student writes: “ Here we have a predator-prey model because if the predator
decreases or decays, [then] the prey will grow in logistic model; however if the prey decays, the
predator will also decay exponentially...” In this writing exercise, this student was not specific as to
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which variable represents the prey and which represents the predator. The student also did not discuss
explicitly the effect of the positive and negative signs of the mixed terms. In my opinion, this student
may be one of those who do not know how much writing is required in problems of this kind. As for
Figure 5, it shows the work of a student who simply writes very little. ~ For many students however,
writing is seen at the end of the semester as an essential component in the learning process. In one
questionnaire distributed at the end of one semester, students were asked to answer to the following
question: In many instances, writing was essential to communicate an idea/concept. What is your
opinion on writing in mathematics (differential equations in particular)? Your opinion should be
independent of your English capabilities. All the students who responded to this question agreed that
writing was essential in the course. Some reasoned (rightfully) that writing complements the
geometrical approach adopted in the solution process:

“Since the course stresses on the geometrical way of solving DE’s, this makes the
writing very essential for the student to be able to express and tell the way or the steps
followed in solving and drawing the solution.”

“Writing is very important in this course especially when no analytical solution is
attainable. It is useful to describe the behavior of solutions where we have geometrical
approach. Even when we hive a quantitative solution, we need to explain it to let
others understand what the equations we have written express.”

Others argued that writing was also necessary for enhancing the learning and for showing
that concepts have indeed been understood:

“I found absolutely no problem in the “essay questions” on exams and in homework.
In fact, I think that they were very useful because they clarify concepts in our mind.
Once we write to explain an idea in our own words (often with the aid of sketches),
we make sure we fully understand it.”

“Generally, writing in mathematics is very important. Personally I think solving an
equation by only using the mathematical syrhbols without explaining the procedures
followed isn’t that good because it may become a procedure done by heart, while with
writing and explaining the professors can make sure if the students understand the
material.”

“Writing is an essential and useful process in mathematics.... For example, when
solving a system analytically, a student may solve it either by chance or by cheating in
some instances! So writing provides the instructor about the student’s understanding
of the subject taken.”

In conclusion, the eventual positive reaction of the students concerning writing is
extremely encouraging. It is comforting to know that students do consider writing as a tool to
enhance learning as well as a tool to clarify ideas presented geometrically. However, I think
that students will always ask questions such as: How much is enough? How detailed should I
be? Or: Is this what you want? It has proven difficult to answer these questions and
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consequently to grade essay questions. However, time and practice will certainly improve the
style in which essay questions are asked. This in turn should help students know what exactly
to write, and help instructors in the grading process.
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Figure 1. The slope field of the population model & some solutions.
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Figure 3. An almost complete analysis of the predator-prey system.
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Figure 4. A student who does not seem to know how much and what to write in analyzing the
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Figure 5. A student who writes very little.
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CALCULATION OF AREAS:
The discussion of a mathematical-historical problem that exposes
students’ conceptions of Proofs
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ABSTRACT

The present study constitutes an attempt to check students’ conceptions about the nature and the significance
of mathematical proofs. The setting of this study was a mathematical-historical discussion within the
framework of a course dealing with the development of mathematics. The students - elementary school pre-
service mathematics teachers - were exposed to some problems taken from the Egyptian mathematics. After
the lesson — that included the presentation of a formal proof of the main statement discussed - the students
were asked to answer individually and in writing questions concerning the Egyptian method to calculate the
area of a quadrilateral. The analysis of their answers reinforces the conception that pre-service teachers may
know how to perform the “ceremony” of proof but in general, they do not appropriately conceive its
meaning or its role establishing truth in mathematics.
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1. Introduction

Already in the eighties, researches have shown that students do not quite understand the
essence and significance of mathematical proof although they are generally capable of performing
the “ceremony” of proof. This result fits Arthur Eddington’s image, that as far as they are
concerned “Proof is the idol before whom the pure mathematician tortures himself”.

In the study conducted by Fishbein & Kedem (1992) students received a proof of a
mathematics statement and then were asked to state whether further concrete examples were
required in order to establish the truth of the same statement. Its main finding showed that,
although most students claimed that they had understood the proof, they felt that they should
examine further examples in order to consider whether it is true or not.

The present study constitutes another attempt to check students’ conceptions about the nature
and the significance of mathematical proofs.

2. The Study

Following Hanna (1996), I believe that “... proof deserves a prominent place in the curriculum
because it continues to be a central feature of mathematics itself, as the preferred method of
verification, and because it is a valuable tool for promoting mathematical understanding.” (Hanna,
1996, p.22). And although mathematics teachers in elementary schools do not generally deal
directly with proofs of mathematical statements, they must know and understand the legitimate
mathematical methods to establish the validity of a statement. Moreover, as mathematics teachers
they must teach their students to justify their assertions and how to present these justifications in a
manner that would convince the others that their claims are valid. It is therefore important to
examine mathematics students’ and teachers’ conceptions of proof and to what extent they are
aware of the various functions of proof as a mathematical activity.

The setting of this study was a mathematical-historical discussion within the framework of a
course dealing with the development of mathematics. The students - elementary school pre-service
mathematics teachers - were exposed to some problems taken from the Egyptian mathematics. The
population included 25 students majoring in mathematics teaching for elementary schools. This
population consisted of 18 females and 7 males. The students belonged to the Jewish sector
(n;=13) and to the Arab sector (n;=12). During the meeting the students communicated in Hebrew.

In general, the framework of this college course on the development of mathematics enables:

a. The review of contents with which the students are familiar — i.e.: calculation of areas

and the review of contents they will teach (area, quadrilaterals and their properties);

b. The exposure of students to the need for more substantial tools in mathematics than

measurement, observation and experimentation;

c. The exposure of students to the idea of proof, to different kinds of proofs and to

discuss “what giving a proof means”;

d. The exploration of students’ conceptions of what constitutes evidence in mathematics

and what the roles of proof are.
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In a two-hours meeting they were shown a way to calculate the area of a quadrilateral as it
appears in the Rhind Papyrus (Eves, 1982, p. 14)". The meeting was designed as follows:
a. Calculation of the area of a square when the length of the sides is known.
b. Calculation of the area of rectangle when the length of each side is known.
c. For each one of these quadrilaterals, the teacher presented the calculation of its
area according to the Egyptian method.
d. An attempt to calculate the area of a rhombus where the length of its sides is
known and the teacher’s presentation of the calculation according to the Egyptian
method. (See Figure 1)

a SE=(a+a)-(a+a)=a2
2 2
a h f
S=a-h<a?
a
Figure 1

e. Calculation of the area of an isosceles trapezoid where the length of its sides is
known and the teacher’s presentation of the calculation according to the Egyptian

method (figure 2).
3
B+11) (5+5)
Sg = . =30
5 5 E 2 >
1
3
s/ |, ; s=(3+“)'3=21
2
11

Figure 2

Short discussion on the differences between the two values obtained in section (v)

g. The teacher asked the participants to build a quadrilateral — assisted by a suitable
software — where the area calculated according to the Egyptian method (Sg) is
smaller than its area calculated according to “our” method (S).

! The Egyptian method for finding the area of the general quadrilateral is to take the product of the
arithmetic means of the opposite sides.

Q- 289




h.  After such an example was not found, some students suspected that such a quadrilateral
does not exist. In other words, the following conjecture was formulated: In every quadrilateral, the
number obtained from the Egyptian method (Sg) is bigger or equal to the area of the quadrilateral
(S). .

i.  The teacher presented a proof for that statement and the proof was discussed in

class (see Appendix).

Immediately after the lesson, the students were asked to answer individually and in writing the
following questions:

1. Describe the method according to which the ancient Egyptians calculated the area

of a quadrilateral.

2. Istheir method correct? Explain.

3. Have we the right to judge the method’s correctness? Can’t we be mistaken?

Explain.

The first question was asked in order to make sure that the students understood the method to
calculate the area of a quadrilateral according to the length of its sides. It also enables to find
different ways of formulating this method.

The second question reveals to what extent the presentation of a proof in class influences the
students’ consideration of the validity of the statement proved.

The third question is the main one in this study, and it enables to disclose the degree of
students’ understanding that any result contrary to a proved one must be false.

3. Findings

All the students were able to describe correctly the Egyptian method of calculating the area of a
quadrilateral. They established that with regard to rectangles, the method was precise, while in
other cases it resulted in findings, which differed, from those obtained by *“our”” methods.

The distribution of students' answers to the other two questions is presented in Figure 3.

.
3

studen s
1o ade Bgwptean 4 -
st et 1514 Ko
[y =zl
) ‘ah LY
Hove welhe mgd o
radge” Ho Teg
= =33 n=21
Figure 3

When designing the meeting, the rhombus and the trapezoid were chosen having in mind that
these quadrilaterals are known to the students - i.e. they know how to calculate their area. The
rhombus was introduced in a generic way by presenting the length of its sides by means of the
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parameter a and without giving any information about its angles. Students were supposed to
notice that in this case, the number provided by the Egyptian method constitutes in fact the area of
the square with side a and all the other rhombuses of the family have smaller area. According to
Peled and Zaslavsky (1997), this should have been a generic counterexample, but there is no
evidence that the students grasped it.

The trapezoid was introduced as a specific quadrilateral and it was chosen purposefully to
constitute an example that leads to the conclusion that the Egyptian method is wrong since there is
at least one quadrilateral for which the area given by the Egyptian method is different from the
area given by “our” methods.

Five students maintained that the Egyptian method is correct. Although the results obtained
from the calculation of the area of the trapezoid described in Figure 2 were still on the blackboard,
these students were not aware of the fact that at least one of these results must be wrong'since they
contradict each other. These students recognized that the results are different but did not recognize
the contradiction between them. One of them - Orly - was extremely skeptical:

“Who says they were wrong and we are right? The results are different, 1 agree. But maybe our
method is the wrong one.”

It seems that Orly forgot that "our” method to calculate the area of a trapezoid -for example-
can be proved, making it true. From her comments, I learn that it is important to explicitly stress
the fact that any result different from a proved one, must be false. This was not clear to the five
students that contended that the Egyptian method is correct.

The eighteen other students claimed that the Egyptian calculation is indeed wrong. They related
the error to the following categories:

The Egyptian method is incorrect because

i.  “itis not proved” (8 students);

ii.  “itis not clear how did they get it” (4 students);

iii. “we found a counterexample” (3 students);

iv. “we proved that their result is, in general, larger than the real area” (3 students).

The eight responses in category (a) illustrate another aspect of what De Villiers referred to as a
“fundamental axiom” upon which mathematics is assumed to be based: “Something is true if and
only if it can be (deductively) proved” (De Villiers, 1997, p.20). In their case, the statement is
formulated in a variant that logically follows from the axiom: “If something is not proved, then is
false.” It may be interesting to investigate further this view since it may be interpreted at least in
two ways: “If something cannot be proved, then it is false” (a statement that may be refuted if we
think about statements like axioms or definitions) or “If / did not prove something, then I cannot
accept it as true” (a statement that is not appropriate to elementary school teachers for whom the
deductive nature of the mathematical contents they teach is not always very clear).

Orly’s response is an illustrative one from this category:

“I think that they [the Egyptians] were wrong, because they did not prove that their way is the
right one, and did not demonstrate how they arrived to these methods and why. I consider it
possible that we are wrong, but that someone must refute our methods and prove that our
calculation methods are wrong.”

Category (b) includes responses of students that seem to refer to an aspect of the role of
explanation played proofs: in general, the main role of proof is considered to be the verification
that a mathematics statement is true but not always we are able to provide proofs that show why
this statement is true. Although they were exposed to an explanatory proof that the Egyptian

287



O

ERIC

Aruitoxt provided by Eic:

method is correct if and only if the quadrilateral is a rectangle, the students were not exposed to the
reasoning that led the Egyptians to the formulation of their method of calculation. From this lack
of information they concluded that — as Rinat expressed it — “the Egyptians were not rigorous
enough, hence they were mistaken.”

Out of all the students (n=25), only two of them — Daniel and Gabriel - pointed out that we do
have the right to claim that the Egyptian method is wrong.

While Daniel argued:

“The proof at the blackboard rells us that our claim is true and it gives us the right to say we are
right... The moment I saw the example of the trapezoid, I knew that the Egyptians were wrong...

1)
]

Gabriel reasoned as follows:

“I think that everything is relative: The error is relative, because when one says ‘error’ one
must add ‘error with regard to...” or ‘error in the framework of...”. The Geometry with which we
are familiar is Euclidean, but I won't judge according to it. According to the Euclidean Geometry,
the Egyptians were wrong for the following reasons: 1) Our calculations today prove to be more
precise than the Egyptians. 2) Our calculations are based on progof, but the Egyptians calculated
according to estimations or maybe as a result of trial and error considerations. Maybe one day
someone will say that we were wrong, because all our calculations were built on the Euclidean
Geometry, which was based on axioms formulated by Euclid and these axioms, are irrelevant. The
terms ‘right’ or ‘wrong’ are therefore relative and depend on the rules they were subjected to...”

These two students exposed two important aspects of proof that, in my opinion, deserve more
attention among teachers educators: a) the role of examples and counter-examples while proving
or disproving a conjecture - while a million of examples are not enough to establish the truth of an
universal statement, one sole counter-example is enough to disprove it; b) the appreciation of the
deductive methods used in geometry, specially the fundamental role played by axioms and
definitions. Qut of 25 students, only two were able to identify the notion of proof with the notion
of certainty, meaning that - under the conditions the statement is proved — one can be sure that no
counter-example exists and nobody will ever be able to construct or find such a counter-example.
Moreover, Gabriel reminds us of the fact that no theorems or formal proofs are known in Egyptian
mathematics and that there is no clear distinction between calculations that are exact and those that
are only approximations.

The other 23 students advocated that we have no right to claim that the Egyptian calculation is
wrong. For example, Ariel, Bruria and Chris claimed:

Ariel:

“We have no right to judge because it is a different culture and the knowledge depends on the
culture. The achievements of every culture should be respected.”

Bruria:

“We have no right to judge and claim that they were wrong, because their time was different
from ours. They developed their methods according to the ways and means they had available ...
We cannot say that their calculations were wrong as long as we do not have a proof of the error. It
is important to keep in mind, that everything is right until you prove the opposite. This also applies
to the Egyptians: In their time their calculation was correct.”

Chris: ‘
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“I think, that the Egyptians arrived at their formula from a more ancient one. They proved it in
their own way and the Egyptians accepted this formula at that time, until our formula was
established. I don’t think that we have the right to claim that the Egyptians were wrong, because
our formula is based on theirs. The formula used by us is an improvement and development of the
ancient one and does not contradict ir. It is possible that in the future the calculations of the area of
a general quadrilateral will be investigated and a better and more correct formula than ours will be
discovered. Then our formula will not be good and right, or even not precise enough.”

These three excerpts illustrate the students’ lack of understanding of what the meaning of
giving a proof really is. They were indeed able to recognize that the Egyptian method is easy to
use since it only involves elementary arithmetical operations and that it was used for every
quadrilateral. On the other hand, they admitted that nowadays they do not know of a method to
calculate the area of a general quadrilateral but a special method for each kind of quadrilateral.
These advantages of the Egyptian method are mere illusions if we consider the fact that the
Egyptian method was proved not to be accurate. I agree with these students that it is important to
respect the achievements of every culture but this respect does not imply that we cannot compare
and point out that some results are contradictory and some methods are not accurate. Pre-service
teachers need to be exposed to the developmental aspect of mathematics, to different paradigms of
proof, to the meaning of truth in mathematics and to the ways truth is achieved in mathematics.
This exposure may foster their conceptual understanding of proof beyond their algorithmic
knowledge of how to prove.

4. Concluding Remark

These preliminary results ask for further analysis but from the exposed above it appears that.
Hanna’s recommendation is relevant more than ever:

“With today’s stress on teaching meaningful mathematics, teachers are being encouraged to
focus on the explanation of mathematical concepts and students are being asked to justify their
findings and assertions. This would seem to be the right climate to make the most of proof as an
explanatory tool, as well as to exercise it in its role as the ultimate form of mathematical
justification. But for this to succeed, students must be made familiar with the standards of
mathematical argumentation; in other words, they must be taught proof’ (Hanna, 1996, p.33).
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APPENDIX

Given:

Quadrilateral ABCD

BC=a, CD=b, DA=c, AB=d

Prove that:

saBcpy<| 4te [ 2te
2 2

Proof:

Lemma The area of a triangle
with sides @ and b, is no larger than

5 %\ “’NM
5" b | h' b

In the quadrilateral ABCD, built diagonal BD.
Then, according to the Lemma above:

S(ABCD) = S(ABAD) + S(ABCD) < % " %b_

In the quadrilateral ABCD, built diagonal AC.
Then, according to the Lemma above,

d b
S(ABCD) = S(AABC) + S(AADC) < 32— + ?C

Adding, we get that
2.S(ABCD)S(-C2£+a_:)+(ﬁ2EI_+%£)= dc+a)+bla+c) (a+c)-(b+a)

(a+c)-(b+d)
4

The equality holds if and only if the quadrilateral is a rectangle.

2 2

Therefore, S(ABCD) < in every quadrilateral ABCD.
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GEOMETRICAL AND FIGURAL MODELS IN LINEAR ALGEBRA

Ghislaine GUEUDET-CHARTIER
IUFM de Bretagne
& Laboratoire de didactique des mathématiques, Université de Rennes 1
Campus de Beaulieu, 35042 RENNES, France

e-mail: Ghislaine.Chartier@univ-rennesl.fr

ABSTRACT

According to many university teachers, “geometrical intuition” can help students in their
learning and understanding of linear algebra. Fischbein’s theory about intuition and intuitive
models provided us with a framework that confers a precise meaning to “geometrical intu-
ition”, and permits to examine its possible effects on students practices in linear algebra. We
study especially geometrical models, stemming from a geometry, and figural models, whose
elements are drawings. We describe here some aspects of the use of these models by teachers
and students in linear algebra.
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1 Introduction

University teachers in France often declare that “geometrical intuition” might help
students in their learning and understanding of linear algebra. Several educational
researches mention possible interactions between geometry and linear algebra (Dorier
2000) but none of them tries to clarify the specific problem of intuition. In order
to design a theoretical frame allowing us to tell and answer research questions about
geometrical intuition in linear algebra, we used Fischbein’s theory about intuition in
mathematics, and models as intuition factors. We will first briefly present that theory,
and the questions it raises in the case we study. Then we will expose elements of our
work about the use of geometrical and figural models by teachers and students in linear
algebra.

2 Using models in mathematics : the theory of Fis-
chbein

We will set out here the elements of Fischbein’s work which are relevant for the present
study.

Intuition and the use of models

According to Fischbein, every human being needs to act in accordance with a credi-
ble reality. Even within a conceptual structure, the reasoning endeavor needs a form of
certitude. The role of intuition is to provide that kind of certitude. Intuition is for Fis-
chbein a type of cognition characterized by self evidence, immediacy and certitude ; it
always exceeds the given facts. Models are a central factor of intuition in mathematics
: Fischbein defines a model as follows :

“A system B represents a model of system A if, on the basis of a certain
isomorphism, a description or a solution produced in terms of A may be
reflected consistently in terms of B and vice versa” (Fischbein 1987 p.121)

Fischbein distinguishes several kinds of models. The ones we use in our study are
intuitive models. An intuitive model can be perceived like a concrete reality ; it can
stemm from a mathematical theory, if it stays connected with a certain reality (the
opposite is a theoretical model, i.e. a mathematical modelisation of a physical reality).
There are also several kinds of intuitive models, in particular :

e Analogical and paradigmatic models

An analogical model must be independent of the original ; in that case, the model
and the original belong to two distinct conceptual systems. On the opposite, a
paradigmatic model is a subclass of objects, used as a model. It is not a mere
example, but a particular examplar, representative for the whole class.

e Intramathematical and extramathematical analogies
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Fischbein also distinguishes different sorts of analogical models in mathemat-
ics. The main distinction is beetween intra and extramathematical models. In
the case of an intramathematical analogy, the original and the model are both
mathematical theories. On the opposite, extramathematical analogies occur with
extramathematical models. In our study, it will be the case when the model is a
material representation (we use in that case the term “drawing”, or “picture”, re-
ferring to (Laborde and Capponi 1992)). We will refer to such models as “figural

models”.

We define geometrical intuition in linear algebra as the use of geometrical or figural
models.

Geometrical and figural models in linear algebra

We define here a geometry as a mathematical theory whose main objective is to
provide a theoretical model for physical space (it is notably restricted to dimension 3).
A geometrical model is a model stemming from a geometry ; it is an intuitive model, be-
cause the geometry is connected with physical space. It is an intramathematical model
; it can be either paradigmatic, or analogical, depending on the corresponding geometry
(that geometry can be indeed a subclass of linear algebra, or can be independent of it).
It is always associated with a figural model. The geometrical model can thus smuggle
uncontrolled elements in the reasoning process. For example, when studying the general
notion of quadratic form, students encounter in some cases vectors orthogonal to them-
selves. That property cannot be associated with a result in two-dimensional Euclidean
geometry ; it is opposed to the drawing usually used to represent two orthogonal vectors
in the plane. Thus in that case, the reference to a geometrical model stemming from
Euclidean geometry might prevent the understanding of the general theory.

We also study the use of figural models in linear algebra for themselves, independantly
of any geometry.

In the following study, we will rather refer to the use of models than to the general
expression “geometrical intuition”. The questions we study can then be formulated as
follows :

e What are the possibilities and the limits of the use of geometrical and figural
models in linear algebra ?

e What are the effective uses of models, by teachers and students ?

The results we present in the two following sections are partial answers to the second
question.

3 Teacher’s choices

We addressed a questionnaire to university teachers, who were used to teach linear
algebra (in France). It included several parts, related to various aspects of the use of
geometrical and figural models in linear algebra. We will give here details about their
use of figural models, and the conclusions of the whole questionnaire.
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3.1 Teacher’s use of figural models in linear algebra

In our questionnaire, two tables were proposed for the teachers to fill in : one with three
drawings, that are sometimes used in linear algebra (according to a previous textbooks
study) ; the teachers were asked to say if they use them, and what they illustrate with
them ; and an empty table (with five lines), where the teachers were asked to present
other drawings they use.

The drawings of the first table, and examples of drawings and interpretations proposed
by the teachers, are presented in Annex 1.

Analysis of the answers led to the following conclusions.

Little use of a figural model

A first global statement is that teachers do not use many drawings in their lin-
ear algebra courses. Only 16 of the 28 teachers who answered that question proposed
drawings in the second part of the question, i.e. other drawings they might use in their
courses. And the average number of drawings proposed by these 16 teachers is 2.25 ;
this is very low, considering the fact that there were five lines to be filled in the table
figuring in the questionnaire. The average number of drawing per teacher, for both
parts of the question, is only 3.2.

No specific figural model ?

Moreover, most of the drawings are used to illustrate situations in dimension < 3
, in fact situations occuring in R? and R®. Only 43% of the teachers propose more
interpretations referring to an abstract vector space than to R? and R®. For example,
for the first drawing (see Annex 1), nine teachers propose the interpretation : “Basis of
the space!”, and three “Orthogonal basis of the space”, while only three of them quote
the general notion of “Orthogonal basis”, and only one the general notion of basis.
For the second drawing, eight teachers mention an intersection of planes, and only five
an intersection of subspaces.
The drawings proposed by the teachers are not very different from what we proposed
in the questionnaire : except for two quadric surfaces, they are mostly combinations
of parallelograms, lines (plain or dotted) and arrows. Only five drawings represent a
2-space ; the thirty-one others are perspective drawings, evoking the 3-space, even if
they are used to illustrate situations in a general vector space ; 3-space seems probably
more representative than the plane, a better candidate for a paradigmatic model.
The notions illustrated by at least two teachers are projections, orthogonal projections,
symmetries, rotations, supplementary subspaces, coordinates of a vector.

In fact, most of the notions and properties quoted by the teachers have already
been encountered at secondary school in France, in the geometry course : lines, planes,
symmetries, projections (it is not the case for supplementary subspaces and rotations
around an axis).

IThe term "space” refers here directly to geometry. In French indeed, “space” used on his own
means “geometrical 3-space”.
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So the teachers do not seem to develop a specific figurative model, independant
of a geometrical model, in linear algebra. For some teachers, drawings intervene only
when they mention an affine geometry in their linear algebra course. Some others (a
minority) use drawings in linear algebra, but only for R? and R®. In that case, linear
algebra in R? and R? could then be used as an intuitive, paradigmatic model for the
whole theory. But there is is no evidence that the students will be able to use that
model, especially if the teachers use no drawings in general vector spaces (we will not
study that question here).

3.2 Conclusions of the teacher’s questionnaire

Considering the answers to the whole questionnaire leads to distinguish two main ten-
dencies among the teachers.

Some of them praise a structural approach to linear algebra, with almost no figural
model associated. Geometry will then be presented as a mere application of the general
theory.

On the opposite, the others choose to present an affine geometry, with an associated
figural model, before introducing linear algebra.

This is a clear symptom of the influence, still very strong, of the discussions held before
and during the reform of modern mathematics in France (1960-1970).

Only a minority of teachers propose a figural model especially elaborated for linear al-
gebra. It might have negative consequences on the students practices : if some students
need a figural model to help their reasoning in linear algebra, they will probably use
a model associated with affine geometry, unsuitable in a vectorial space (they can for
example mention " parallel” subspaces, when asked for their possible relative positions).

4 Use of models by students

4.1 Presentation of the test
Description of the activity

We have chosen to submit to first year university students an unusual linear algebra
task : for two given sets of vectors of the plane, represented by two drawings, they
were asked to say if there exists a linear application sending the first onto the second.
Six couples of drawings were proposed ; the first was a parallelogram (except in the
sixth case, where it was a segment) ; two basis vectors were drawn on the sides of the
parallelogram. The second was either a parallelogram, or a circle, or a triangle, or a
segment (see Annex 2).

The students were also asked to provide a justification for their positive or negative
answer, but no proof, because we only wanted to observe the elements used to base
their reasoning process.

Possible uses of models, and related difficulties

Several models can be used by students in that context ; we will briefly describe
them here.
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o Geometrical models

— Usual geometrical transformations

Students can use the model of the “usual” applications of the plane : rota-
tions, projections, symmetries, dilations. That model can stemm from linear
algebra in a two-space, but also from secondary school geometry. The main
problem here is that students may answer negatively if they do not iden-
tify a usual geometrical transformation sending the first set of vectors onto
the second. That problem has been pointed out by Sierpinska (Sierpinska
2000), in a research work about the learning of linear applications. She calls
that kind of phenomenon “thinking of mathematical concepts in terms of
prototypical examples”.

— Preservation of spatial properties
Students can associate with linearity, or at least with linear applications
of R?, some preservation properties. For example : “A linear application
preserves alignment”, or “A linear application preserves parallelograms”. It
can lead to wrong answers if only alignment is taken into account ; in that
case, some students can declare that a parallelogram can be transformed into
a triangle.

e Linear algebra properties associated with a figural model

Students can use figural models, associated with different aspects of linearity, and
different properties of linear applications.

— Stability properties
The stability properties, for the sum and the scalar multiplication, can be
associated with drawings. For example, the drawing of a parallelogram can
illustrate the sum of two vectors, and the coresponding stability.

— Transformation of the basis vectors

The students we asked know that a linear application of the plane is charac-
terized by the images of two basis vectors. So they can draw on the second
picture two arrows representing these images, as a justification for the exis-
tence of a convenient linear application. The problem that can arise here is
that students only care for the two vectors, forgetting the rest of the figure.
In that case they can even answer that a parallelogram can be transformed
into a circle.

— QOther properties

Figural models associated with various other properties of linear applications
can intervene.

“A linear application sends a subspace on another subspace” ; “A linear
application sends the nul vector on itself”... Some of these properties involve
the notion of dimension : “the dimension of the image of a subspace F' is
less or equal than the dimension of F”, for example. There is in that case a
special difficulty, stemming from a figural model associated with the notion
of dimension. The given drawings can be misinterpreted ; in particular, a
confusion between “dimension” and “direction” can occur.
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4.2 Answers analysis

The test was proposed during the second semester of the first university year ; 43
students answered it. They already had linear algebra during the first semester, with
different teachers (the tutorial groups are reorganized between the two semesters).
Uses of the models mentioned above clearly appear in their answers, with the associated
difficulties. Several models can intervene in the same answer. In fact, three main types
emerge, corresponding to the following use of models :

o Usual transformations and dimensional properties (18 students, labelled “U”)

These students use the two models together ; they propose for example a usual
transformation to justify their positive answers, and use a dimensional argument
in a negative case.
The association of these two models is surprising at first sight, because they are
of different natures. But they both correspond to an attempt of students to
elaborate a figural model that can help them in their task. For that purpose,
they use familiar objects ; but these objects are unsufficient to provide here an
appropriate model.

e Transformations of the basis vectors (14 students, labelled “B”)

Only one model intervenes in these answers : the characterization of a linear ap-
plication of the plane by the images of two basis vectors. These students reduce to
a minimum their use of a figural model. Their reasoning is based on a theoretical
property ; they draw two vectors on the second picture, because they are asked to
do so. But most of them neglict to condider the whole drawing ; they claim, for
example, that a parallelogram can be transformed into a triangle, because they
can represent two “image vectors” on the sides of the triangle.

e Preservation of spatial properties and stability properties (10 students, labelled
“P”)
The two models used in these answers are in fact closely related. The properties
“A linear application preserves parallelograms”, and : “A linear application
preserves sum and scalar multiplication” can indeed be associated with the same
drawing ; the first can be used as an intuitive model for the second. The associated
figural model is well adaptated for the task we proposed here.

(37 answers are gathered in these types ; for the 6 remaining answers, there is no evi-
dence of the used models, but all of them are wrong).

The following crosstable shows the distribution of the students answers in the three
types, together with their success or failure to the test.

Correct answer | Incomplete answer | Wrong answer | Total
U 1 1 11 13
B 2 2 10 14
P 4 2 4 10

A correct answer means here that the choice of a positive or negative answer was
right in the six cases ; in a wrong answer, there is at least one mistake. Only seven
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students are right in the six cases ; it is indeed a difficult task, where drawings play a
major part, on the opposite of the students habits.

Despite the low number of students in each box, it appears clearly that the ones be-
longing to the type labelled “P” are more likely to succeed than the others.

5 Conclusion

We presented here very local results ; but they point out general phenomena, confirmed
by the rest of our work (Gueudet-Chartier 2000).

Some students need a figural model to help their reasoning in linear algebra (in the
experiment we presented, they were obliged to deal with drawings ; that statement
comes from other parts of our work).

But most teachers do not propose in their linear algebra courses a suitable, specific
figural model. What are the consequences for the students practices ? According to
our observations (the test presented above provides an example of it), three main types
stand out :

e Some students do not seem to use any figural model. A minority of these students
proves nevertheless a good understanding of linear algebra.

o Others try to construct by themselves such a model, using for example secondary
school geometry ; but it turns out to be inadaptated for linear algebra.

¢ Some students elaborate a suitable figural model ; moreover, they are quite suc-
cessfull in various linear algebra tasks. However, it is difficult to decide if that
model is a factor, or on the contrary an evidence, of their understanding of linear
algebra.

Studying further the students uses of figural models in linear algebra would require the
organization of a teaching experiment, allowing us to know exactly wich models have
been proposed, and to observe their influence on the students practices.
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ANNEX 1

Drawings proposed to the teachers :

Examples of drawings proposed by the teachers :

Drawing That drawing illustrates

X .
Orthogonal projection on a plane
) Orthogonal symmetry
\ |

X I x and its orthogonal projection on P
|
P

l\ Rotation about an axis
/ 6! /
|
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Drawings proposed in the students test :
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ABSTRACT
This paper discusses some issues in numerical optimisation. It illustrates graphically the rationale behind
some optimisation techniques. It shows the perils that await the unwary when extrapolating using functions
whose parameters have been specified by choosing the values, which minimize a sum of squares of errors.

! Choose the better part. (Luke 10:42)
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Introduction

The wisdom of the command: * choose the best part’, should be obvious to all. Optimisation
is the branch of mathematics which deals with the techniques for locating the maximum or the
minimum of a function, i.e. ¢ the best part’’.

There is the common misconception that to determine the location of the minimum of a
function of several variables, f( x,,X,,...,X,), one simply needs to solve the system of non-
linear equations formed by setting to zero the partial derivatives of f :

_ af (x,,%,,...,%,)
ox,

1
However, to solve such a system, usually, one needs to use a numerical procedure. Efficient

numerical methods to do this are based on finding the minimum of
2

S= 2 F(x,x,,..x,)

i=1

F(x,,x,,..,x,) =0,i=12,..n

Thus, numerical optimisation is required for solving systems of non-linear equations and not
the other way around.

The computational methods for solving optimization problems are generally known as hill-
climbing techniques that is because they mimic the strategy that a climber may use in trying to
reach the summit of a mountain. Different strategies are open to the climber to reach the summit
and we shall illustrate the rationale behind some of them.

Optimisation is frequently used to fit models to data with the intention of summarizing,
interpolating or extrapolating from the observations. Extrapolation carries the implication that the
estimated parameters are physically meaningful. However, it is very possible that parameters
which produce a very good fit to the data lead to disastrously unsuitable extrapolations. Then,
when is it safe to extrapolate? The paper discusses, through examples, the issues involved.

Finding the best part

Let us consider the simplest strategy for locating the optimum of a non-linear function using a
hill climbing technique. Consider that a climber is trying to reach the summit (maximisation) of a
hill, or the bottom of the hill (minimisation), without a map and in dense fog. The climber can
rely on an altimeter to measure altitude and a compass, which allows him to maintain a fixed
direction. Measuring is time consuming, but movement itself is easy. The climber wishes to move
as fast as possible. What is the best strategy?

It seems that the simplest approach would be to move along an arbitrary direction, such as the
north-south line making regular measurements of the altitude until the highest point on the line is
reached. Starting from this new point the same operation can be carried out along the east-west
direction. This process of alternating searching along fixed directions ultimately will take the
climber to the summit.
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The algorithmic implementation of such simple procedure is known as the univariate search.
To illustrate it we consider a problem presented by Box et al [1]. We wish to specify a function
that relates the concentration 7) of a chemical substance with time. The function is of the form:

- Bl (e'ﬂz' _e-ﬂ.')

(B 1 Bg)
where, 3, and 3, are parameters which need to be estimated. Given a set of observed values for
n and ¢, a common procedure is to estimate the s by the method of least squares. That is:
minimise the sum of the squared differences between the observed values and the predicted ones.
That is, we want the location of the minimum of

f(xl ’xz) = Z()’,- —n(xpxz))z

where x, and x, stand for the possible values that we can, respectively, assignto §,and §3,; y,

n

correspond to the observed concentration at time ¢,. A set of observations is listed in Table 1.
Let us consider finding valies for the betas by minimizing f using only the first six pairs of

values of the data set.

Table 1. Observed concentration values y, attimes ¢;.

t; 0.0625 0.125 025 0.50 1.00 2.00 4.00 5.00 6.00 7.00

1

y; 0.01 002 008 015 022 0.51 048 0.29 0.20 0.12

The shape of the function £ is illustrated by its contours, shown in Figure 1(a). The picture
also gives the path to the minimum using the univariate strategy. It is obvious from the graph that
the path to the optimum requires a large number of short steps. However, the short steps could be
used to define a general direction and a more efficient method would be to move along such a
direction. The Davey, Swann and Campey (DSC) [2] algorithm does this. In contrast to the
univariate search the DSC algorithm takes advantage of the accumulating information about the
function. Starting at the point x‘® one cycle o the univariate search determines the point x‘".
The next search is along the line joining x® and x® which determines the point x(*, and then
we search at right angles to the previous search direction to determine x‘¥. The next search
direction is along the line joining x‘®and x‘®, and so on. Figure 1(b) shows the iterations using
the DSC algorithm. In this case far fewer steps and function evaluations are required.
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Figure 1. (a) The univariate search, locates the optimum, using 581 function evaluations, at
(0.2442,-0.2402), with f =0.002.
(b) The DSC algorithm uses 142 function evaluations to fin d the optimum at
(0.2433, -0.2431). Both methods start at the point (0.5,0.39).

However, if our intrepid climber was allowed also to carry a spirit level, then he could use it
to measure the lay of the land, and this extra information might lead him to choose his direction
of search to be along the steepest descent. He might well find that such a strategy might produce a
succession of large number of short steps similar to those of the univariate search. But being a
smart climber he would realise that information about the gradients could be used, as in the DSC
method, to determine a more efficient direction. This will lead him, no doubt, to discover the
conjugate gradients method. Furthermore, having information about the gradients, he might
consider gathering information about the curvature of the land, and using it might well develop
Newton's type methods. It may well be that the terrain over which he is moving is very rocky - a
noisy function - and therefore he may decide that he is much better off using the DSC strategy
than the more elaborate methods which involve misleading gradient measurements.

All these strategies for numerical optimisation can readily be illustrated using graphs like
those in Figure 1 and generalize to problems in more dimensions because the principles on which
the methods are based are the same for two as for higher dimensions. The illustrations can easily
be done using the software from McKeown et al. [2].

The function, specified with values for 8, and [, which minimise f, fits the first six points
of the data very well. There may be the temptation of assigning physical meaning to the estimated
betas. However, when the rest of the observations are viewed, the fitted function is in complete
disagreement with them. Any extrapolation using the fitted function, or a physical interpretation
given to the parameters would have been unwise. On the other hand, it is simple to see that a set
of values for x, and x,contained in the lowest contour of the sum of squares function are
possible candidates for selection as values for the betas. For such a set there is not much change
in the value of f . In particular, the pair of values at the start of the iteration fit the data almost as
well as the ones that optimise f, and they happen to specify a function that gives reliable

predictions for the extra data points. Figure 2 illustrates this.
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Best fit models for the concentration data

(@ ()
Figure 2. (a) Fitted function. (b) 3D Plotof f(x,,x,).

So, what is going on here?

The answer to the question lies in the fact that the function we are minimizing is insensitive to
changes in x, and x,. This is particularly visible in Figure 2 (b), which gives a 3D plot of f.
The plot shows that f is practically constant along the line joining the initial and optimal values
of x, and x,. Though we found a local minimum, its location is insensitive to changes along the
ridge of f shown in the figure. The problem is sai to be ill-conditioned, and in such cases the
fitted curve is only suitable for interpolation and no physical significance should be assigned to
the estimated parameters. The data has forced us into a curve fitting problem and not a parameter
extraction one.

By contrast when using the last six observed values to estimate the parameters we get the
optimal values at x, = 0.5153, x, =0.3475 and f = 0.0363 . The contours of the new least
squares function are given in Figure 3(a), they show that changes around the minimum lead to
significant changes in f . The corresponding 3-D picture confirms that in this case there is no ill-
conditioning.
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Figure 3. (a) Contours of the sum of squares function for the last six data points. The steps of
the univariate search are also illustrated from the starting point (0.5,0.39).
(b) The 3-D picture of the sum of squares function.
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The plot of concentration against time in Figure 4 (a) shows that extrapolation is a lot less
problematic when there is no ill-conditioning. Furthermore, a well-conditioned problem makes
for a faster path to the optimum as illustrated in Figure 3 (a), showing the sequence of steps to the
optimum when using the univariate search.

Concentration function
The p i with the last six points
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Figure 4. (a) Concentration against time fitted using the last six points.
(b) Orbits for Neptune - calculated and actual. The numbers on Uranus correspond
to the year when its location was used to determine Neptune’s orbit.

A classical story of ill-conditioning

Recently the fascinating story of the discovery of the planet Neptune was published in a
popularized form [3]). The story in the book contains a fair dose of human drama. It is exciting
also because it is an example of a successful theoretical astronomical prediction. Using the
discrepancies observed in the orbit of Uranus two mathematicians working independently, one
French, Urbain Jean-Joseph Le Verrier, the other English, John Couch Adams, accounted for the
discrepancies by predicting the existence of a new planet - Neptune-

These two mathematicians were breaking new ground. Newton’s theory o gravitation had
been used to calculate the effects of bodies on one another, but this was the first time that the
theory was used to predict the position of a body from observations of the effects of its gravity on
other bodies. However, not everyone was using the new planet explanation to try to account for
the problems in Uranus’ orbit. The Astronomer Royal George Airy supported the hypothesis that
Newton's inverse square law did not apply over large distances. The perseverance of the two
young mathematicians on the validity of their assumptions, against the pressures from a famous
and established scientist are only part of the intricate drama that led to the discovery of Neptune.
Their work not only helped in the discovery but it confirmed the universalty of the gravitation
law, and produced a model of work for the interaction between mathematicians and
experimentalists.

Adams and Le Verrier were able to point out were in the sky to look for the planet. The
astronomers duly found it in 1846. However, t is interesting that both mathematicians failed in
determining with any accuracy the orbit of the planet for the region where there were no
observations. Figure 4 (b) shows the theoretically proposed orbits and the actual one. Note that
the maximum error in the predicted orbits is about half the radius of Uranus’ orbit. This is

306



interesting to us, because it is an example of the consequences of ill-conditioning. To specify the
orbit the mathematicians used the observations on the discrepancies observed in Uranus's orbit
occurring during the first half of the 19th century. They were used to determine both, the position
and the mass of Neptune. The mathematicians obtained a good fit to the data by overestimating
the mass of the planet and the radius of the orbit. The errors compensated to give a fit acceptable
in the region were the data was available but the calculated orbits were not suitable for
extrapolation. The calculated orbits diverged more and more from Neptune's. Had the search for
the planet taken place a few years earlier or later it would not have been found anywhere near the
predicted location.

Optimisation and mathematical education

Optimization is a decision-making problem: how to maximize or minimize the value of some
quantity. In many cases this amounts to assigning values to certain quantities called the decision
variables. We showed that optimization problems are common in science and engineering and
that they usually cannot be solved by analytical methods and that computational methods must be
used. There are two educational issues here, the first one is how to present a rationale for the
numerical procedures for optimization. The second issue is to identify the applicability of the
results of the optimization. '

The analogy of ‘hill-climbing’ can be used as a powerful teaching tool to illuminate the ideas
behind many of the numerical optimization methods. This is so because the algorithms for
optimization can be illustrated with twodimensional functions. We looked in particular at the
idea behind the Davies Swann and Campey algorithm. From a simple description of the idea, the
specification of the method — for any number of dimensions — seems a trivial generalization of the
‘hill climbing’ analogy. For example, we can state the DSC procedure for optimising a function
of n variables as:

I Setk=1. Select an arbitrary starting point x®

2 Carry out one cycle of the univariate search algorithm to produce x*
3 Selectq=x"® -x*" as a new search direction.

4

Generate n — | orthogonal directions and orthogonal to q.

5  Search along q and each of the other n — 1 orthogonal directions to determine the
new point xX**?. Each search begins at the end of the previous one.
6  If stopping criteria satisfied stop, else set k = k+1 and repeat from 3.

We used bold face to denote an n-dimensional vector. The algorithm above is a
straightforward generalisation, to n dimensional functions, of the basic idea illustrated in Figurel
(b).

Further exploitation of the hillclimbing analogy might le ad us to question the efficiency of
obtaining exact determinations for the x* s. It may be better not to find the optimum along a
search direction but simply a better point from which to continue the search along a different
direction. This policy may take more cycles, but overall, may require less use of the altimeter, and
as changing direction involves no effort, a method with inexact line searches might be a more
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efficient one. The educational possibilities when using sensible, imaginative ideas derived from
the hill-climber analogy are boundless.

Optimisation is also taught as a procedure to fit equations to data. The objective, of course is
to model a physical situation. However, the applicability of the fitted model is highly dependent
on the conditioning of the problem. We illustrated that for two-dimensional problems ill
conditioning implies a flatness, about the optimum,. of the function we wish to optimize. Thus, the
effect of ill-conditioning is to provide many possible, near optimal, but possibly dramatically
different solutions. When this occurs, the only sensible use for the fitted model is for
interpolation, which is not an unimportant outcome as the history of the location of Neptune
testifies.

Though a mathematical treatment of ill-conditioning is an advance topic, the ideas and
consequences of ill-conditioned problems can and should, as we have shown, be presented in
more elementary courses in data analysis and optimization.

Finally, we feel that the teaching of numerical optimization should not be constrained by the
use of ‘analogies’. Their value is simply to provide another point of view, which might help to
make the topic more interesting. We do not think that there is a unique solution to the teaching of -
the subject. It may well be that the problem of optimizing the teaching of mathematics is ill-
conditioned, in the sense that there are many equally satisfactory solutions, and hence one should
be careful to extrapolate from any of them.

Concluding remarks

The analogy of hill-climbing has been shown to be useful for providing a motivation for
numerical optimisation methods. The fundamental problem of using models, which are fitted to
data, has been discussed. In particular we concentrated on the important distinction between data
fitting and parameter extraction. We showed that when the problem is ill-conditioned, ‘choosing
the best part’ can only be used for summarising the data and that no physical meaning should be
associated to the parameters of the model. The discovery of the planet Neptune, during the middle
of the 19th century, and the failure to specify its orbit was offered as an example of the effects of
ill-conditioning. It would be an exciting project to investigate the conditioning of the problem
using formal methods of analysis. There are, of course, such formal methods, McKeown and
Sprevak [4] show how to use them in an application. It is not, however, the objective of this paper
to deal with such formal methods but to offer a pictorial representation of ill-conditioning and of
its consequences. We believe that everybody could profit by being aware that when fitting models
to data, using optimization methods, the usefulness of the fitted model depends greatly on the
conditioning of the problem. The moral of the lesson is: ‘Optimam partem elegit’, but be aware of
its limitations.

Acknowledgments : We wish to thank Dr. J. J. McKeown for many interesting debates at the
Thursday Seminars.
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ABSTRACT

A new approach was tried in presenting a matrix algebra course to students with differing abilities and
diverse needs. The course had previously been presented using fairly traditional methods where the
emphasis was on the transmission of knowledge from the lecturer to the students (using partially completed
notes which students filled out during lectures). While exam results were reasonable, based on well
practised examples, the course was fairly narrow and prescribed.

A change to a more student centred approach was effected using the following mix.

(1) The lectures paralleled a text book (Linear Algebra with Applications by David Lay), which closely
followed the Linear Algebra Curriculum Study Group recommendations for an appropriate core syllabus
responsive to client needs, and using a matrix-oriented problem solving approach. The resulting lectures
were reasonably informal, encouraged students to read the text for themselves, attempted interaction and
incorporated some technology.

(2) There was a weekly computer laboratory session using Matlab, where students were encouraged to
work cooperatively in pairs on problems from the databank of Matlab exercises available with the text, and
on other projects that emphasised understanding and demanded written interpretation.

(3) There was a weekly individual exercise, which provided a variety of question types from routine
computations and standard algorithms to short proofs that required an understanding of key concepts.

The paper considers such questions as how successful the course was from the viewpoint of lecturer and
student, how Matlab was used not only for calculating more realistic examples but to aid understanding, and
how well the group approach worked.
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Background

Admission to university in New Zealand is fairly open. School leavers require a modest
performance in their final national school exams, while those aged 20 or over are granted
automatic entry. As in other countries, there has been a large increase in the numbers of students
attending university in recent years, with Otago’s role ncreasing by some 50% in the past 10 - 15
years. This means the mathematical background and ability of entry students is very mixed. As
well, students now pay sizeable fees (from some 2000 Euro for science to more than 5000 Euro for
health science), so although there is a Government loan scheme, there is considerable pressure to
have reasonable pass rates in courses.

The matrix algebra course is a 200 level one semester paper usually required by mathematics
majors. Its prerequisite is two semesters of 100 level mathematics, which combine algebra and
calculus and are fairly traditionally taught large classes using little or no technology. Topics
taught in the algebra section include introductory material on 3-D vector algebra, matrices,
determinants, 2-D linear transformations and eigenvectors.

The University enrols students in arts, science, business, health sciences and other disciplines
(but has no engineering school), and the matrix algebra course caters to students from all of these
areas, although predominantly science. For about half the students it is their only mathematics
paper. But there are also some honours students from the likes of mathematics, statistics, physics
and computer science.

The previous course used ‘“‘outline notes”, that is a bound set of partially completed notes in
which students copied down examples, diagrams and arguments during lectures. Some problems
using Matlab were set on the exercise sheets (from Kolman 1997). On the face of it students
learned well, but I became concerned that the course was too prescribed and the students too
“spoon-fed”. When all mathematics papers were changed in 2000, I decided to try a more “student
centred approach”, that is making the students (where possible in collaboration with others) more
responsible for their learning, and changing the lecturing role to more that of a facilitator, as
advocated in Berry et al 1999. At the same time I introduced technology as an integral part of the
course.

The Course

In designing any mathematics course at Otago, there is a certain tension between providing a
challenging course but being aware of competing courses which often make fewer time demands.
Even the other 200 level mathematics courses have only a one hour (come if you need help type)
tutorial. After due consideration the following mix was chosen.

(1) The lectures (32) paralleled a text book (Lay 2000), the author being a member of the
Linear Algebra Curriculum Study Group, who have put out a recommended curriculum for a first
course in linear algebra (Carlson et al 1993) which this text follows. This syllabus, widely debated
and generally acclaimed (see Dubinsky 1997 for a contrary view), worked well with the diverse
students in my course.

Because of the sort of conceptual difficulties discussed in Dorier & Sierpinska 2001, the
chapter on general vector spaces was avoided in favour of the more concrete approach of treating
all vectors as n-tuples in R". The emphasis placed by Lay on considering the columns of a matrix
aided understanding. For example the definition of Ax as a linear combination of the columns of A
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with weights from the vector x eased the initial problems students have in reformulating between
vector equations and matrix equations. The early introduction of key concepts such as linear
independence and spanning (together with the computer work) also seemed to give students a
much better and more confident grasp of these often troublesome ideas. The geometrical focus
helped students grapple with concepts, from the more abstract notion of a subspace (which still
takes time) to the more concrete ideas involving least squares.

The students received in advance, chapter by chapter, a one page summary of each section we
covered in the book, giving key definitions, results and Matlab commands needed. So in theory, if
not in practice, students could read ahead and prepare for lectures. The lectures themselves were
reasonably informal, highlighting the principal issues in each section and leaving the students to
work through much of the detail, although I still probably explained more than I should. The first
year I gave no notes at all but just talked, and tried with varied success to get class participation
(somewhat difficult with 90 students). The second time I gave some informal notes (due to
feedback from the first year, possibly influenced by comparison with the companion calculus
paper where all notes were given by hand), such as quick summaries, problems to watch for, or
perhaps considering part of a proof.

Lay’s text comes with a database of all the book’s exercises in whatever CAS is used (we used
Matlab). By typing the simple command cisj, Matlab prompts which question you want from
chapter i, section j. This made it easy to consider any question from the text in lectures.

(2) Students attended a weekly two hour Matlab session, using problems from the text to
practice standard algorithms and computations (before doing their individual exercises) and mini-
projects from various sources, such as the CD or Matlab manual (Day 2000) accompanying Lay,
or suggested in the MAA notes (Carlson et al 1997).

Matlab was selected because the command structure is straightforward (no programming was
required). In the first lab before lectures began, students were given a handout and asked to get to
grips with entering matrices and doing standard matrix operations. From then on students were
asked to work in groups (most chose pairs because of the lab layout), jointly writing up their work
and sharing the mark, which counted towards their internal assessment. Because of their algebra
knowledge from 100 level mathematics, students started the course applying new technology to
old mathematics (following the rule of thumb suggested by Berry et al 1999) and coped easily,
perhaps occasionally needing a reminder about syntax (which was usually supplied by another
student!).

There is evidence that using technology can develop understanding (see Mayes 1996). The
following sample of examples we considered convinced me of this.

(a) Realistic examples of linear equations.

After looking at smaller examples, linear traffic flow problems or temperature grids
involving perhaps 20 variables can be easily tackled. Homogeneous systems such as balancing
the chemical reaction

MnS + As,Cr;40;5 + H;SO, —» HMnO, + AsH; + CrS;0,, + H,O

also give concrete examples of what a vector n-tuple might represent.

(b) Visualizing linear transformations.

The MHile planelt (which comes in a package with Kolman 1997) nicely demonstrates the
effects of 2D transformations. I ask students to take a shape and observe (sketch) how it
changes under a succession of transformations and then find a single matrix with the same net
effect (and check that it works — they quickly learn to compose matrices in the right order!) A
similar M-file drawpoly (from Day 2000) can be used to illustrate affine transformations in the
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plane in the section on computer graphics, using homogeneous coordinates and 3 x 3 matrices.
For example to rotate a figure about an arbitrary point.

(c) Standard algorithms.

The computer allows students to concentrate on the algorithm rather than the arithmetic, and
is useful for practising routine calculations such as LU factorizations or diagonalizing matrices.
Further, they can easily check their result works which may iron out any misconceptions, for
example with regard to the order in which the eigenvalues are placed in the diagonal matrix.

(d) Computer insights.

Counting the number of operations (flops) used in a task is instructive, for example in
calculating (AxA)xx or As(Asx), which brings the associative rule to life. Considering
rounding errors also gives insights. For example students found by chance a simple integral
matrix for which det(A) = 0 but rref(A) = / (row equivalent to I). Then using the rrefmovie
command they could observe how a pivot could be small but not small enough to be set to 0,
unless the default value for the tolerance (numbers smaller than this value are set to 0) was
increased. The effect of partial pivoting can also be explored. For example, students could use
this technique to produce the same LU factorization calculated by Matlab (which differs from
the usual hand calculation because of partial pivoting).

(e) Experiment and prove situations.

The computer can be quickly used to show patterns leading to conjecture and (possibly)
proof. For example, the behaviour of triangular matrices (used in LU decompositions and other
applications) is explored in many texts. Students get bored pretty quickly using random
matrices to cserve that like triangular matrices are closed under products (although a picture
proof is instructive), but guessing the form of the inverse of a 3 x 3 (or 4 x 4) triangular matrix
with integral entries (using rational format) usually requires a good number of repetitions to
spot the pattern and the consequent conjecture can then be proved.

() Iterative processes.

Finding the steady state vector of a stochastic matrix or iterative solutions to linear systems
using the Gauss or Jacobi method are ideal for CAS.

(g) Eigenvectors.

Lay introduces eigenvectors by considering a dynamical system involving the three life
stages (junior, subadult, adult) of an owl population. Matlab enables these populations to be
quickly modelled and graphed simultaneously. Students can then get a real feel for how the
populations behave as the survival parameter (junior to subadult) varies. Later (after
eigenvector bases have been explored) they can explore how the eigenvalues of the associated
matrices change with this parameter. Matlab can also be used to plot the iterates of a point
under the action of a matrix (so for example the trajectory of a dynamical system) and observe
how these vary according to the eigenvalues.

(3) There was a weekly exercise that students worked on individually, with a variety of
questions (mostly from Lay) such as routine calculations, standard algorithms or short proofs. The
well designed questions from Lay require little computation, largely avoided being repetitive
(often asking the same underlying question in different ways), and tested knowledge in quick but
searching ways.

Conclusions

Delegating more responsibility to students for their leaming, provided more time in lectures to




stress the main results (using lots of transparencies), to give informal and intuitive meanings to
concepts and to discuss pedagogical issues. However there was still a conflict between covering
the material (for those who might use the linear algebra) and spending more time understanding it
(for those for which the course was a vehicle for learning some mathematics). Using Matlab
helped break up the lectures and generate discussion, but further class activities would help.

A fairly detailed student survey of the course was conducted and some of the responses are
recorded in table 1. As can be seen, generally the students found the pace appropriate and the book
easy to follow. Surprisingly (see table), they also preferred the lecture approach taken to the more
secure outline notes which they had used in 100 level courses and which they rated favourably
there.

Strongly agree neutral  disagree  strongly

agree disagree
Pace of material appropriate 30% 45% 22% 3% 0%
Book easy to follow 28% 55% 11% 6% 0%
New approach better than outline notes 19% 48% 26% 6% 0%
Matlab enhanced understanding 13% 57% 9% 21% 0%
Group work enhanced understanding 30% 33% 23% 10% 3%
Table 1

From my perspective the group activity in tutorials worked really well and students generally
agreed with this. They also found Matlab helped their understanding although not all agreed (see
table). There was a much better participation rate in tutorials and a more vibrant (nosier!)
atmosphere. Various problems sometimes associated with group activities, such as inactive
members or subdividing material were largely avoided since the students worked mainly in pairs
sharing one computer (largely dictated by the lab layout). Usually the longer the pairs worked
together the better the collaboration, but I didn’t force this and for various reasons there were
realignments or the occasional person who wished to work alone. In most partnerships, even when
one was mathematically weaker than the other, both were able to contribute in various ways
(perhaps one might be more computer savvy or a better recorder than the other). There was the
odd instance of a very lopsided liaison in which the weaker student was considerably helped by
their partner.

I tried to encourage the groups to record a clear description of the object and outcome of each
exercise as well as the mathematics involved, but success here was mixed (sometimes lots of
numbers were recorded but not the big picture). The marking scheme tried to reward good
explanations, but because not all parts were able to be marked the scores awarded were not always
very discriminating and were generally quite high, but this had a good attitudinal spin off. 1 would
probably design a lab sheet in future to encourage better explanations. The University now
regularly conducts surveys of student opinion in all courses and mathematics performs well in
areas such as “developing problem solving skills” but poorly in “written communication skills”
and “ability to work as a team member”. The computer labs should help address these concerns.

The individual exercise was more challenging and discriminating. Answers to odd numbered
questions are given in Lay, so students could try an adjoining exercise, which although different
might have some similarities. Of course more routine hand calculations were often checked by
students using Matlab. Student’s lack of experience in tackling proof type questions was obvious
and even with lots of help (in office hours) success was mixed.
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In general I was happy with the course, and felt it was a step in the right direction away from a
passive lecturing style to a more active student involvement.
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ABSTRACT

This paper reports on the results of a four-year study called CASCADE-IME] that is a learning
environment (LE) in the form of a face-to-face course and a web site (www.clix.to/zulkardi ) which aims to
introduce Realistic Mathematics Education (RME), Dutch approach to mathematics education, as an
innovative teaching methods in Indonesia trough prospective mathematics teachers in initial teacher
education. It also presents the background of mathematics reform in Indonesia by adapting RME as a
promising approach. Then, the paper describes the process of a development research approach in which
three prototypes of the LE have been developed and evaluated both by prospective mathematics teachers in
Indonesian Educational University in Bandung and several experts in the Netherlands. Finally, it will

discuss the changes on the prospective mathematics teachers after they followed the LE program with a
more detailed on their teaching performance in junior secondary mathematics classroom.

Key words : mathematics learning environment, www, RME, development research
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Introduction

Up to now, the teaching process in mathematics classrooms in Indonesia is still conducted
mainly with a traditional (or mechanistic) approach. Teachers actively explain the material,
provide examples and exercises, whereas the students act like machines, they listen, write and
perform the tasks initiated by the teacher. Group or whole class discussions are seldom present and
interaction as well as communication is often missing. Likewise, mathematical goals and
curriculum materials used in the classrooms are still based on ‘mathematician’ mathematics not on
student mathematics with a focus on real life application (de Lange, 2001). This is in contrary to
the needs of the information society in which mathematics literacy is an important goal. In
summary, it is clear that goals, content and teaching and learning approaches in the mathematics
classroom need to be reformed.

Since the last three years, the CASCADE-IMEI study is tied to the current reform of
mathematics education in Indonesia. In an attempt to combat the low achievement in mathematics
of students on national exams, the Indonesian government has attempted to identify probable
reasons for this problem. Research cites various causes, including inaccurate learning materials,
inadequate mechanistic teaching methods, poor forms of assessment and the anxiety of students to
mathematics. One of the promising approaches toward the teaching and learning of mathematics
that is thought to address these problems is realistic mathematics education (RME). RME is a
theory of teaching and learning mathematics that has been developed in the Netherlands since the
early 70's (cf. de Lange, 1987; Freudenthal, 1991; Gravemeijer, 1994). Contrary to the current
mathematics education in Indonesia, RME uses realistic and interdisciplinary materials as a source
as well as a starting point for mathematics teaching.

This study aims to introduce RME to (prospective) mathematics teachers in teacher education
in Bandung, Indonesia, by developing a learning environment in the form of a face-to-face RME
course and web site support. In this learning environment (prospective) teachers are encouraged to
build up their background knowledge as well as to develop knowledge regarding (Selter, 2001):
the mathematical component (overview of RME theory, doing mathematics); the didactical
component (how to design and teach RME lessons ); the practical component (how to manage
RME classroom during classroom practice); and the psychological part of RME (how do pupils in
the school learn and understand RME lessons).

This paper will focus on the impact of the learning environment on (prospective) mathematics
teachers and teacher educators as well as on pupils in the classrooms with regard to RME as an
innovation in mathematics education in Indonesia.

Theoretical Framework

The learning environment, including both the course and the web site, is based on the RME
philosophy and principles. The philosophy of RME is mostly determined by Freudenthal's view on
mathematics (cf. Freudenthal, 1991). Two of his important points of view are: (1) mathematics
must be connected to reality and (2) mathematics should be seen as a human activity. First, in
order to start from reality that deals with phenomena that are familiar to the students,
Freudenthal’s didactical phenomenology, i.e. the view of learning as starting contextual
experience is used. Second, by the guided reinvention principle through progressive
mathematizations, students are guided didactically and efficiently from one to another level of
thinking. These two principles and the concept of self-developed models (Gravemeijer, 1994) are
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used as design principles both in developing the course materials and the web site. Furthermore,

these principles are operationalized into five basic characteristics of realistic mathematics

education or five tenets of RME (Gravemeijer, 1994). In short those are:

(1) Use of contextual problems (contextual problems figure as applications and as starting points
from which the intended mathematics can come out).

(2) Use of models or bridging by vertical instruments (broad attention is paid to development
models, schemas and symbolization rather than just offering the rule or formal mathematics
right away).

(3) Use of students’ contribution (large contributions to the course are coming from student's own
constructions, which lead them from their own informal to the more standard formal methods).

@) Interactivity (the social live in the classroom including explicit negotiation, intervention,
discussion, cooperation and evaluation among pupils and teachers are essential elements in a
constructive learning process in which the student's informal strategies are used as a lever to
attain the formal ones).

(5) Intertwining of learning strands (the holistic approach implies that learning strands can not be
dealt with as separate entities; instead, an intertwining of learning strands is exploited in
problem solving).

Research Methodology

This study uses a development research approach (van den Akker, 1999). With this method, the
learning environment is developed and evaluated in three main phases: preliminary study,
prototyping phase and assessment phase. In this paper the focus is on the research process up to the
prototyping phase in which the three prototypes of the learning environment were designed and
evaluated in the Netherlands and in Indonesia. In the Netherlands, eight experts from four different
expertises (curriculum development, professional development, RME and web site development)
were involved as evaluators of the learning environment. After being revised and adapted to the
Indonesian context, these prototypes were evaluated and implemented to the target group in
teacher education in Bandung.

Development phase
This section provides a brief description on both components of the learning environment (see
also Zulkardi & Nieveen, 2001): the course and the web site as illustrated in Figure 1.
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P P
L 2R 4 + 4
I ALK J |‘l'A:’;‘l<l‘l‘C’OI.I I TUTOR | I TEST I
I Tirer waob it J

Figure 1. The components of the learning environment
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The course

The RME course is a part of the learning environment that is developed in order to make
(prospective) mathematics teachers understand what RME is and how to implement RME in the
classroom. The main contents of this course include: (1) overview of the RME theory; (2) learning
what are RME materials and how to redesign them; (3) learning how to teach wing the RME
approach in the classroom; and (4) learning how to assess the pupils in the RME classroom.

The web site
The web site, www.clix.to/zulkardi, is developed in order to support the course participants

in a sustainable way. In order to do so, the following options are available:

(1) Online Info-base or task. The online info-base is the main component of the web site and
consists of exemplary RME materials such as student materials and teacher guide; student
productions from RME classes, applet programs and mathematical games, links to web sites
that have relationship with mathematics education in general and RME.

(2) Online Tutor. In order to inspire (prospective) mathematics teachers before they conduct
teaching practice in the school, an online tutor was designed. At his moment, the online tutor
consists of theory on how to use RME materials in the classroom. In the future, a number of
video clips that illustrate critical moments of teaching using RME materials in the classroom
will be made available. For example, how to start the lesson, how to organize and to manage
discussions. '

(3) Online Talk. In order to provide (prospective) mathematics teachers with opportunities to
discuss their problems and experiences, the web site provides an online talk element including
e-mail facilities, a message board and a mailing list.

(4) Online Test. In order to facilitate (prospective) mathematics teachers with a number of RME
problems, an online test called problem of the month was developed. It contains not only an
example of RME problems but also a guide on how and when to use them in the classroom
practice.

Research phase and questions
The results of the implementation and evaluation of the learning environment are discussed in
the remainder of this paper based on the following questions:
o  What changes in (prospective) mathematics teachers as well as in pupils in schools in
Bandung are reflected in their attitude towards RME?
o  What changes in (prospective) mathematics teachers in Bandung are reflected in their
knowledge of RME as the content of the learning environment?
o  What are the effects of the learning environment with respect to the mathematics education
society in Indonesia?

Participants

In Indonesia, the main participants of the formative evaluation cycles of the leaming
environment (held in the period September 1999 to January 2000, May 2000 to August 2000,
January 2001 to May 2001 and September 2001 to November 2001) were 27 (prospective)
mathematics teachers & the Department of Mathematics Education, the Indonesian Educational
University in Bandung. All of them had no teaching experiences except four of them, who were in-
service teachers. About 480 pupils participated from 15 secondary school classrooms. In addition,
six teacher educators were involved as supervisors of their students, and 15 school mathematics
teachers were involved as observers in the classroom.
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Instruments

The instruments that were used during the evaluation of the course are an entry and a final
questionnaire, an end of unit test and a guideline for interviewing participants. The instruments
that were used in the school are a final questionnaire, end-of-unit test and observation form.
Furthermore, the instruments that were used in evaluating the web site are an observation form, a
logbook and e-mails for collecting data from the (prospective) mathematics teachers.

Procedure

The course was implemented in the teacher education institute within a time frame of three to
five blocks of four-hours. The course started by giving the participants information about the basic
principles of RME and its characteristics. Then some examples of realistic mathematics problems
were given and discussed in groups to get the idea of each characteristic of RME. Next, the
participants were given a number of RME problems in various topics (such as linear equation
system, symmetry, side seeing, statistics and matrices). After they solved the problems, they were
guided in discussing the various strategies and in several cases they were invited to present their
answers in front of the class. Finally, at the end of the course they were tested to see their
performance in solving the problems. They were followed when they implemented the RME
lessons in school classrooms. These activities took the longer time of the research period. They
developed the lesson materials in collaboration with the researcher, who also observed their
lessons.

The web site was evaluated using a cooperative evaluation, during which the (prospective)
mathematics teachers performed as users and were asked to work aloud. Moreover, during the
whole program, they discussed and reflected on their experiences using e-mails and a mailing list.

Results and Discussion

We present the results and discuss them based on the basis of the questions that were stated in
the research methodology part.
o  What changes in (prospective) mathematics teachers as well as in pupils in schools in

Bandung are reflected in their attitude towards RME?

The sample reactions of participants that were gathered by a similar questionnaire are
summarized in table 1.

Table 1 The results of final questionnaire of 29 student teachers in teacher education (TE), 36
senior high school students (SMUN) and 24 junior high school students (SMPN) after they
followed the RME instruction process.

Items TE SMUN SMPN
Reactions overall + +- | - + +- |- + +- | -
Learning process of RME is interesting 27 |2 0 32 |1 3 24 |0 0
RME materials are interesting 28 |1 0 32 |2 2 23 10 1
Interactivity make me easy to understand 29 |0 0 36 |0 0 23 |0 1
The role of teacher is helpful for me 28 |0 1 35 10 1 24 {0 0
Assessment materials challenge me 26 |0 3 33 |3 0 24 |0 0
Motivates me to learn mathematics 28 |1 0 33 |1 2 24 10 0
Learning other’s strategies is new for me 28 |1 0 36 |0 0 24 |0 0
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Note for reactions: '+': yes, '+/-": neutral, and -": no

In general, the results in table | illustrate that the participants are very interested in the RME
teaching approach both in the teacher education institute and in the schools. These positive
reactions from participants are a necessary prerequisite to higher-level evaluation results. The
items refer to the characteristics of RME. For instance, from the results on the second item 'RME
materials are interesting', it can be concluded that the materials that were used are real to their
situation (the first characteristic of RME) and integrated to other strands or subjects (the fifth tenet
of RME). Further, they found 'a nuance of democracy' in learning mathematics such as the
interactivity and a chance to leamn other’s strategies during the discussion (the fourth characteristic
of RME).

o  What changes in (prospective) mathematics teachers in Bandung reflected in their knowledge
of RME as the content of learning environment?

In order to answer this question three kinds of results are used. The first kind of result consists
of (prospective) mathematics teachers solutions on a test at the end of the course. Here, their
understanding of RME either theoretically or mathematically were assessed. Overall, the results
show that the participants were able to write down the philosophy and the characteristics of RME
and solve RME typical problems in the sense of mathematization. However, the results are not
discussed here because this falls somewhat beyond the theme of this conference. Second, the
knowledge of (prospective) mathematics teachers in developing lessons based on the RME tenets
was taken into account when answering the question. All of mrticipants developed their lessons
based on the RME materials, which were provided by the researcher. As a result of this, all of
them were able to develop their own lessons in collaboration with the researcher. Of course, the
results are not as good as truly RME materials. Nevertheless, as (prospective) mathematics
teachers they have got a valuable experience in designing the lessons. Finally, the researcher
observed the teaching skills of (prospective) mathematics teachers. An overall impression was that
they were able to teach realistic materials in an interactive manner. They used their knowledge
from teacher education such as how to start the lesson, how to make groups of students and how to
guide group and class discussions. However, they also encountered some problems such as how to
motivate the students to get involved in the discussion and how to conclude the lesson.

o  What are effects of the learning environment (the web site) to the mathematics education
society in Indonesia?

As the web site of the CASCADE-IMEI has been online since last three years, thousands of
users, most of them from the mathematics education society from many countries (dominantly
from Indonesia), have accessed the web site. On the basis of data that were gathered from user's
feedback either through forms, e-mails, or a mailing list it can be concluded that this first
mathematics web site in Indonesia has positive effects in:

e providing information, learning opportunities and communication facilities concerning
mathematics education to not only mathematics education people but also parents and policy
makers; and

¢ functioning as a dissemination tool of RME to other (prospective) mathematics teachers all
over Indonesia.

Conclusion

Based on the results in the previous section we can concluded that:
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o Changes in (prospective) mathematics teachers as well as pupils in schools in Bandung
reflected in their attitude to RME have shown that they are interested in RME as an innovation
as well as 'a nuance of democracy’ in mathematics classroom (such as the interactivity and a
chance to learn other's strategies during the discussion) has been accessed not only in the
undergraduate (teacher education institution) level but also in the secondary school level.

e Changes in (prospective) mathematics teachers in Bandung reflected in their knowledge of
RME theory have shown that they could perform better as RME teachers in classroom
practice.

e The learning environment (the web site part), as the first web site of mathematics education in
Indonesia has positive effects in supporting a traditional course in teacher education.
Hopefully, the web site will be a nice dissemination tool for an innovation to mathematics
society in Indonesia.

Nevertheless, these tentative changes have only been found mainly in the research locations of
the CASCADE-IMEI study in Bandung. As Indonesia is a big country with about 225 million
people, of course, the issues of scaling up and dissemination become of paramount importance. In
this process we need to learn from experiences of mathematics education in Indonesia and in other
regions all over the world.
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ABSTRACT

The solution of a reaklife problem via mathematical modeling often leads to the posing of a
mathematical optimization problem. Even if the modeling exercise is relatively simple, the solution of the
associated optimization problem represents a non-trivial and time-consuming process. In the teaching of
mathematical modeling, this fact often inhibits the student from carrying out the repetitive but essential
evaluation of various alternative models in order to arrive at an acceptable solution. To overcome this
difficulty, the Toolkit for Design Optimization (TDO) was recently developed (Snyman et al. 2001). This
system allows the student to easily solve his or her formulated optimization problem on a computer, through
the interactive use of a graphical user interface (GUI), without doing any formal programming. This paper
briefly describes the system, and presents some experiences of the authors in using TDO in teaching a
course in creative modeling to a group of senior undergraduate engineering students. With very little formal
knowledge of mathematical optimization algorithms, the students were capable of solving a wide range of
modeling problems. Of particular importance is the finding that the system not only enables the students to
be creative in solving non-trivial design problems, but also allows them to have fun in doing so.

Keywords : computing technology, mathematical modeling, optimization algorithms
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1. Introduction

The attempt at solving a reallife problem via mathematical modeling requires the cyclic
performance of the four steps depicted in Figure 1. The main steps are: 1) the observation and
study of the realworld situation associated with a practical problem, 2) the abstraction of the
problem by the construction of a mathematical model that is described in terms of preliminarily
fixed model parameters p, and variables x that have to be determined such that model performs in
an acceptable manner, 3) the solution of a resulting purely mathematical problem that requires an
analytical or numerical solution x*(p), and 4) the evaluation of the solution x*(p) and its practical
implications. After step 4) it may be necessary to adjust the parameters and to refine the model,
resulting in a new mathematical problem to be solved with an associated new solution to be
evaluated. It may be required to perform the modeling cycle a number of times before an
acceptable solution is obtained. More often than not, the mathematical problem to be solved in 3)
is a mathematical optimization problem requiring a numerical solution. In many cases, even if the
modeling exercise is relatively simple, the solution of the formulated optimization problem
represents a non-trivial and time-consuming process. In the teaching of mathematical modeling,
this fact often inhibits the student from carrying out the repetitive but essential evaluation of
various alternative models in order to arrive at a practical solution. The Toolkit for Design
Optimization (TDO) (Snyman et al. 2001) allows the student to easily solve his or her formulated
constrained or unconstrained optimization problem on a computer, through the interactive use of a
graphical user interface (GUI) without doing any formal programming.

TDO employs gradient-based optimization algorithms and depending on the type of problem
being solved the student has the option of experimenting with different algorithms. TDO can be
used to select an analytical objective function to be optimized as well as additional analytical
equality and inequality constraint functions if constrained problems are considered. Allowance is
also made for the use of approximations in specifying the objective and constraint functions.

In this paper the use of the toolkit is illustrated through its application to two sample
mathematical modeling problems, typical of those' that may be posed in the classroom. The first
problem is the determination of the minimum cost design of a beer can of prescribed volume. The
objective of the second example is to find the equilibrium configuration of a cable of negligible
weight subjected to concentrated loads. Experiences of the authors with TDO in teaching a course
in creative modeling to a group of senior undergraduate engineering students are also discussed.
Of particular importance is the finding that the system not only enables the students to be creative
in solving non-trivial design problems, but also ensures that they have fun in doing so.

2. Statement and Numerical Solution of an Optimization
Problem

A mathematical optimization problem can be stated as follows:
Find x=(X,X3,....X,) € R ", that minimizes f(x) subject to the constraints
g(x)<0, j=12,...,m and 2.1
hi(x)=0, j=12,..r
where f(x), g(x) and h(x) are scalar functions of the variables x. The function f is called the
objective function and g; and h; are respectively the inequality and equality constraint functions. A
local optimum solution is denoted by x".
TDO uses gradient-based optimization methods developed at the University of Pretoria to
solve the above general problem. These methods have the common and unique property that no
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explicit line searches are required. The individual algorithms that may be selected by the student
are LFOP (Snyman 1982 and 1983), ETOP (Snyman 1985), and SQSD (Snyman and Hay 2000a)
for unconstrained optimization, and LFOPC (Snyman 2000), ETOPC (Snyman 1998) and
DYNAMIC-Q (Snyman et al. 1994 and Snyman and Hay 2000b) for constrained problems. With
ETOP(C) both a Fletcher-Reeves or a Polak-Ribiére implementation is available. DYNAMIC-Q
allows for the solution of (2.1) through the solution of a sequence of simple quadratic approximate
sub-problems, constructed from the sampling of the function values and gradient values of the
objective and constraint functions at successive approximate solution points.

3. Mathematical Modeling

The formulation of a mathematical modeling problem as an optimization poblem involves
transcribing a verbal description of the problem into a well defined mathematical statement by
performing the following three steps (Arora 1989) (i) In addition to fixed parameters p, identify a
set of design variables to describe the system, i.e., the ndimensional vector x=(X;,Xa,..., %,). (i)
Determine a criterion that is needed to judge whether or a given model, corresponding to a given x
is better than another. This criterion is called the objective function f and is of course influenced
by the variables, i.e., f=f(x). (iii) Specify the set of constraints within which the system must
perform. Again the specified constraints are influenced by the design variables of the system. If the
design satisfies all the constraints we have a feasible (workable) system or model.

The following two examples are typical of simple modeling problems that may be posed in the
classroom. They will later be used as vehicles to illustrate the implementation of TDO.

3.1. Beer Can Problem (Arora 1989) The verbal statement of the design problem is as follows.
Design a can that will hold at least a specified amount of beer and meet other design requirements.
The cans will be produced in billions, so that it is desirable to minimize the cost of manufacturing
them. Since the cost can be related directly to the surface area of the sheet metal used, it is
reasonable to minimize the sheet metal required to fabricate the can. Fabrication, handling and
aesthetics and shipping considerations impose the following restrictions on the size of the can: 1)
the diameter should not be more than 8 cm and not less than 3.5 cm; 2) the height of the can
should be no more than 18 cm and no less than 8 cm; and 3) the can is required to hold at least a
specified volume, V.. ml, of fluid (e.g., Vipec=400 ml =400 cm®). The mathematical formulation is
now obtained by performing the following steps. (i) The design variables are identified as x,=D=
diameter of the can (cm) and x=H= height of the can (cm). (ii) The objective function to be
minimized is the total surface area of the can: area = nDH+% aD’ . This gives f(x)= nx.x2+§ T X ,2 .

(iii) From the statement of the problem the following inequality constraints are identified. The
volume = -}nDZH 2 Vo, 1.6, , §(X)= Vgpec —-}nxfxzs 0. Constraints on the size can imply:
35<D=x,<8 and 8<H =x, <18. The final formal mathematical statement of the design
optimization problem is therefore:

minimize f(X)= X, X2+4 7 x

such that g(x)= Vgec—d X} %< 0 with side constraints 3.1

g,(x)=35-x,<0;g,(x)=x,-8<0;8,(x)=8-x,<0; g, (x)=x,-18<0

3.2. Cable Configuration Problem Consider the symmetrical system of three masses supported
by an inextensible cable of negligible weight as shown in Figure 2. The problem is to find the

equilibrium configurations of the cable for different choices of masses m; and my , and connecting
lengths ¢, and £,. This problem may also be formulated as an optimization problem by
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performing the following three necessary steps. (i) Identify the relevant variables as (x;, x;), the
Cartesian coordinates of mass m and X the vertical position of mass m;. (ii) Recognize, from
elementary energy considerations, that for any given choice of the masses and the connecting
lengths, the equilibrium configuration corresponds to that of minimum potential energy, i.e.,
choose the objective function as f(x)= 2m, gx,+my;gx, or more simply, f(x)=2m;x,+m,X, since the
acceleration due to gravity g is constant. (iii) As the cable is inextensible, specify the associated
constraints X > + x32 <fland (x,-x,)"+(1-x5)" <43,
The final formal mathematical statement of the cable design optimization problem is

therefore: minimize f(x)=2m,x;+mpx,

such that 3.2)

g (x)=x+x2-02<0; g,(x)=x]+x2+xI-2xx,-2x,+1-£3<0

3.3 Modeling-Optimization Interaction In the modeling process the student would normally
like to quickly evaluate different options and strategies to arrive at an acceptable practical solution.
This would normally require the changing of the different parameters of the specific problem, and
then solving the correspondingly modified optimization problem to evaluate various alternatives.
In the beer can problem (3.1) the typical parameter is Vi , and in the cable problem (3.2) the
parameters are the masses m; and m,, and connecting lengths ¢, and £,. Although the
modification of the model through parameter variation is simple, the solution to the resulting
reformulated optimization problem may be non-trivial by comparison. The latter exercise may also
be time-consuming and distracting. Therefore, if the emphasis in the classroom is to be on the
modeling aspects, i.e., on the formulation and evaluation of different models, then the availability
of a computational device that may easily and quickly be used to solve the different formulated
optimization problems, would clearly be an invaluable aid. The TDO graphical user interface is
such a computational tool.

4. Graphical User Interface

4.1. Main Window The Toolkit for Design Optimization (TDO) is a graphical user interface
(GUI) operating in the Windows 95/98/NT environment that allows the student to obtain solutions
to optimization problems of the form (2.1). It was developed using Visual C++. The main window
of TDO is shown in Figure 3. This Main window is used to control the whole optimization
process, which includes the specification of the objective function (analytical or approximated),
the specification of the design variable names, initial values and/or bounds, the specification of the
constraints, and the optimization algorithm settings. After each item has been set or selected,
control returns to this main window, from where the solution of the optimization problem is
launched. This central control location allows the user to easily compare different algorithms, and
to determine the influence of different settings, e.g., bounds and move limits. The current version
of TDO is limited to five design variables, and the specification of three equality and three
inequality analytical constraint functions. The approximation of the objective function and/or one
constraint function is allowed for.

4.2 Specification of Analytical Functions TDO allows the user to specify analytical functions
in terms of design variables. Several built-in analytical functions are provided. These are mainly
selected through the specification of the coefficients of polynomials and reciprocal terms. The
following general analytical objective function is included in the current version of TDO:
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By specifying the a;;, ac;;, ar; and as; coefficients, the user can select any specific function from
the set defined by (4.1). Of interest to the student is that transcendental and hyperbolic functions
can also be approximated by polynomial functions, and can thus also be specified using (4.1).
Refer to Figure 4 for the objective function dialog. The ‘Approximated’ setting is discussed in
Section 4.4.

The settings of the coefficients of the analytical objective function, as selected by the *Set
Coefficients’ button, are defined in the dialog contained in Figure 5. Note that the settings can be
reset when different problems are run in succession. For constrained optimization problems,
selecting ‘Constraints’ in the main window, allows for the specification of inequality constraint
functions g(x), and the equality constraint functions h(x) in an identical manner to that shown for
f(x) in (4.1) and Figure 5.

4.3. Specification of Design Variables and Optimization Settings Returning to the main
window, the selection of the ‘Design Variables’ setting calls the Design Variable window which
enables the user to name variables and to select their initial values as shown in Figure 6. Any
variable name can be given in the appropriate edit boxes. Constraints in the form of bounds can be
placed on the variables through the selection of the appropriate check boxes and the specification
of the relevant minimum and maximum values.

Selecting ‘Algorithm Settings’ in the main window enables the selection of a suitable
optimization algorithm, ETOP, SQSD or LFOP for unconstrained problems, LFOPC or ETOPC
for constrained problems and DYNAMIC-Q if approximations are to be employed. The window
that allows for the appropriate selections is depicted in Figure 7. For each of these methods, the
user can specify the convergence parameters (Design Variable Tolerance and Objective Function
Gradient Norm) as well as a step size limit linked to the dimension of the design variable vector
and range of the design variables. Default values of the algorithm control parameters are displayed
in the dialog. These values are used if not modified. The maximum number of iterations and the
print frequency of the results can also be adjusted in this dialog.

4.4. Optimization using approximations TDO uses successive spherical quadratic
approximations (Snyman et al. 1994 and Snyamn and Hay 2000b) of the objective and one
constraint function for cases where these functions, evaluated externally to TDO, are expensive to
evaluate. The construction of the approximations at a local design point x® requires the function
value and its gradient at this current design point. The gradient of the function is obtained by first-
order forward finite dfferences. If the ‘Approximated’ setting is selected TDO requires that the
user enter the value of the relevant function at x* as well as each of the values at the respective
perturbation points (x*’ + Ax,), i=l,n. Refer to Figure 8 for the dialog for the Approximated

327



Subproblem Setup. In the case of the first iteration, the checkbox for the first iteration is checked
and the initial curvature can be specified (positive for a convex and negative for a concave
approximation). A default value of 0.0 is used for the curvature (i.e. a linear initial approximation)
if not changed. The solution of successive sub-problems is controlled from this dialog. For the first
iteration, the initial design (starting values of the design variables) as well as the perturbations on
the design variables, and move limits on design variable modification, are first specified. The
objective and/or constraint function values, as obtained from an external numerical (or
experimental) simulation, are entered in the Current Iteration fields. After a sub problem is solved,
the previous objective function and design variables’ values are automatically written in the
Previous lteration fields, and the design suggested by the optimizer automatically becomes the
new Starting values of the design variables for the ‘new’ current iteration. The user then reruns the
external simulation with the new design and the cycle is repeated.

4.5. Results of optimization problem The summary results of the direct solution of an
analytical optimization problem, or of each sub problem using approximations, are given in the
Results dialog shown in Figure 9. This window gives the results for the cable configuration
problem with m=m, =lkg and¢, =¢, =1m. (As a matter of interest the computed solution for
the beer can problem with V=400 em’ is x =7.97885 cm and %= 8.00000 cm). The detailed
results are written to a file that can be imported into a spreadsheet program (Microsoft Excel) for
graphical output by clicking on the ‘View history in Microsoft Excel’ button. A macro in Excel
reads the data and plots the history of the objective function, design variables and constraints. The
numerical data values are also given in spreadsheet format for further processing. Alternatively,
the user can click on the ‘Graphical Display’ button to view the results in a plot inside TDO. This
view is shown in Figure 10. The objective function, constraints and design variables are shown on
the same axis, and are normalized. The normalization factors are given in the dialog for all the
functions and variables.

5. Implementation of TDO in a Design Course

Over the past few years TDO has successfully been used in the teaching of optimization
techniques to relatively large groups and to individual students. In particular, it was recently
employed in a senior design course for engineering students where the following assignment was
set:

“Assignment: Introductory mathematical modeling and optimization exercise using TDO.

This assignment represents a challenge to your creativity. Construct an original model of a
real-world problem situation, simple enough (with respect to the forms of the objective and
constraint functions and the number of variables) to be solved by TDO. In the formulation identify
the parameters p of the model and the design variables x. Obtain a realistic solution to the
problem by executing the modeling-optimization loop (Figure 1) as many times as necessary.”

With very little formal knowledge of mathematical optimization algorithms, the students
were capable of solving a wide range of realistic modeling problems. The problems ranged from
the optimal design of amplifiers, filters and antennas of importance to electrical engineers, to
design problems relating to combustion chambers, centrifuges, cycle chains and formula 1 GP
racers of specific interest to mechanical engineers. Many other problems were also successfully
solved. Some of those worthy of further mentioning include the design of a solid rocket fuel
projectile, optimizing the flow in a continuous casting process, the shape optimization of a soap
bar for longer life and the design of a feeding trough for animals. Most of the problems tackled
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involved three to five variables, with many side constraints and relatively complicated inequality
and equality constraints. In solving these non-trivial design problems, the students had to consider
many different possible models (by varying, for example, the set of parameters p), and solving for
each model the associated optimization problem. These tasks the students accomplished with
remarkable ease, mainly due to the availability of TDO’s user-friendly GUI, through which the
models could easily be modified and optimized.

The above teaching experience has shown that, by giving the student assistance in the
detailed, laborious and repetitive optimization task, enables him or her not only to solve non-trivial
design problems, but also to have fun in doing so. As summarized by one of the students: "The
TDO program is a fun and useful tool in learning design optimization practice.”

Future possible improvements in TDO include the automatic linking of TDO to other
simulation software to evaluate the objective and constraint functions. Other considerations are the
extension to a considerably larger number of design variables; the approximation of multiple
inequality and equality constraints; and the availability of a wider class of built-in analytical
objective and constraint functions.
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Figure 1. The mathematical modeling process.
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settings dialog for beer can problem.
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